Production and characterization of thin films based on soy protein isolate with kraft lignin and tannins obtained by casting

Authors

  • Anderson Junior de Freitas Federal University of Lavras https://orcid.org/0000-0001-8795-1076
  • Nathielle Lourrane Vieira dos Santos Souza Federal University of Lavras, Lavras (MG), Brazil.
  • Karoline Ferreira e Silva Federal University of Lavras
  • Victor Wallace Ribeiro dos Santos Federal University of Lavras
  • Isabela Lourdes Valente Federal University of Santa Maria https://orcid.org/0000-0002-1370-1952
  • Marali Vilela Dias Federal University of Lavras
  • José Manoel Marconcini Embrapa Instrumentation, São Carlos (SP), Brazil.
  • Fábio Akira Mori Federal University of Lavras https://orcid.org/0000-0002-7468-018X

DOI:

https://doi.org/10.14295/bjs.v1i2.74

Keywords:

Soy Protein Isolate, Kraft Lignin, Tannins, Composite and blend, Casting.

Abstract

In the present study, soy protein isolate (SPI) multifunctional bioplastics were prepared by casting, with the addition of tannins extracted from Stryphnodendron adstringens and kraft lignin. The films were obtained through biopolymer composites and blends method, prepared at three pHs (8.5, 9.5 and 10.5) and characterized by thermochemical studies, Fourier-transform infrared spectroscopy, scanning electron microscopy, water vapor permeability (WVP), antioxidant activity, water contact angle, surface energy, wettability, and mechanical tests. The composites presented better results when compared to the blend and control films, respectively, in the polarity, hydrophobicity, WVP and especially in the antioxidant activity tests. Nevertheless, no significant difference between the samples was noticed in the thermochemical and spectroscopic studies. The results presented the potential of the composites to produce SPI biopolymers with tannins and kraft lignin, leading to the development of multifunctional materials as an alternative for sustainable packaging.

Author Biographies

Anderson Junior de Freitas, Federal University of Lavras

Program in Biomaterials Engineering (PPGEB), Federal University of Lavras, Lavras (MG), Brazil.

Nathielle Lourrane Vieira dos Santos Souza, Federal University of Lavras, Lavras (MG), Brazil.

Department of Engineering (DEG), Federal University of Lavras, Lavras (MG), Brazil.

Karoline Ferreira e Silva, Federal University of Lavras

Program in Biomaterials Engineering (PPGEB), Federal University of Lavras, Lavras (MG), Brazil.

Victor Wallace Ribeiro dos Santos, Federal University of Lavras

Department of Engineering (DEG), Federal University of Lavras, Lavras (MG), Brazil.

Isabela Lourdes Valente, Federal University of Santa Maria

Department of Chemical Engineering (DEQ), Federal University of Santa Maria (RS), Brazil.

Marali Vilela Dias, Federal University of Lavras

Department of Food Sciences (DCA), Federal University of Lavras, Lavras (MG), Brazil.

José Manoel Marconcini, Embrapa Instrumentation, São Carlos (SP), Brazil.

National Laboratory of Nanotechnology for Agribusiness (LNNA), Embrapa Instrumentation, São Carlos (SP), Brazil.

Fábio Akira Mori, Federal University of Lavras

Department of Forest Sciences (DCF), Federal University of Lavras, Lavras (MG), Brazil.

References

Abgi. (2020). Accelerating Innovation. Gestão de projetos de inovação. Accel Innov Gestão Proj Inovação. https://brasil.abgi-group.com/o-que-fazemos/gestao-projetos-inovacao/.

Ajwani-Ramchandani, R., Figueira, S., Oliveira R. T., Jha, S., Ramchandani, A., Schuricht, L. (2021). Towards a circular economy for packaging waste by using new technologies: The case of large multinationals in emerging economies. J Clean Prod, 281, 125139. https://doi.org/10.1016/j.jclepro.2020.125139. DOI: https://doi.org/10.1016/j.jclepro.2020.125139

Alwadani, N., Ghavidel, N., Fatehi, P. (2021). Surface and interface characteristics of hydrophobic lignin derivatives in solvents and films. Colloids Surfaces A Physicochem Eng Asp, 609, 125656. https://doi.org/10.1016/j.colsurfa.2020.125656. DOI: https://doi.org/10.1016/j.colsurfa.2020.125656

Amparo, L., Blanco-Padilla, A., Oksman, K. (2020). Strategies to Improve the Properties of Amaranth Protein Isolate-Based Thin Films for Food Packaging Applications : Nano-Layering through Spin-Coating and Incorporation of Cellulose Nanocrystals.

Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll, 41, 265–73. https://doi.org/10.1016/j.foodhyd.2014.04.023 DOI: https://doi.org/10.1016/j.foodhyd.2014.04.023

Arunkumar, R., Drummond, C. J., Greaves, T. L. (2019). FTIR spectroscopic study of the secondary structure of globular proteins in aqueous protic ionic liquids. Front Chem, 7. https://doi.org/10.3389/fchem.2019.00074. DOI: https://doi.org/10.3389/fchem.2019.00074

Asgher, M., Qamar, S. A., Bilal, M., & Iqbal, H. M. N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int, 137. https://doi.org/10.1016/j.foodres.2020.109625. DOI: https://doi.org/10.1016/j.foodres.2020.109625

Bassyouni, M., Javaid, U., Hasan S. W. U. (2017). Bio-based hybrid polymer composites: A sustainable high performance material. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100789-1.00002-2. DOI: https://doi.org/10.1016/B978-0-08-100789-1.00002-2

Bhadra, J., Alkareem, A., Al-Thani, N. (2020). A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J Polym Res, 27. https://doi.org/10.1007/s10965-020-02052-1. DOI: https://doi.org/10.1007/s10965-020-02052-1

Blanco, I., Cicala, G., Latteri, A., Saccullo, G., El-Sabbagh, A. M. M., Ziegmann, G. (2017). Thermal characterization of a series of lignin-based polypropylene blends. J Therm Anal Calorim, 127, 147–53. https://doi.org/10.1007/s10973-016-5596-2. DOI: https://doi.org/10.1007/s10973-016-5596-2

Böcker, U., Wubshet, S. G., Lindberg, D., Afseth, N. K. (2017). Fourier-transform infrared spectroscopy for characterization of protein chain reductions in enzymatic reactions. Analyst, 142, 2812-8. https://doi.org/10.1039/c7an00488e. DOI: https://doi.org/10.1039/C7AN00488E

Boubekeur, B., Belhaneche-Bensemra, N., Massardier, V. (2020). Low-Density Polyethylene/Poly(Lactic Acid) Blends Reinforced by Waste Wood Flour. J Vinyl Addit Technol, 26, 443-451. https://doi.org/10.1002/vnl.21759. DOI: https://doi.org/10.1002/vnl.21759

Cano, A, Andres, M., Chiralt, A., González-Martinez, C. (2020). Use of tannins to enhance the functional properties of protein based films. Food Hydrocoll, 100. https://doi.org/10.1016/j.foodhyd.2019.105443. DOI: https://doi.org/10.1016/j.foodhyd.2019.105443

Cazón, P., Velazquez, G., Ramírez J. A., Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll, 68, 136-148. https://doi.org/10.1016/j.foodhyd.2016.09.009. DOI: https://doi.org/10.1016/j.foodhyd.2016.09.009

Ciannamea, E. M., Stefani, P. M., Ruseckaite, R. A. (2016). Properties and antioxidant activity of soy protein concentrate films incorporated with red grape extract processed by casting and compression molding. LWT - Food Sci Technol, 74, 353-362. https://doi.org/10.1016/j.lwt.2016.07.073. DOI: https://doi.org/10.1016/j.lwt.2016.07.073

Chen, P., Zhang, L. (2005). New evidences of glass transitions and microstructures of soy protein plasticized with glycerol. Macromol Biosci, 5, 237–45. https://doi.org/10.1002/mabi.200400179. DOI: https://doi.org/10.1002/mabi.200400179

Chen, X., Liang, L., Han, C. (2020). Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay. Lwt, 131, 109769. https://doi.org/10.1016/j.lwt.2020.109769. DOI: https://doi.org/10.1016/j.lwt.2020.109769

Chen, Y., Yan, Z., Liang, L., Ran, M., Wu, T., Wang, B. (2020). Comparative evaluation of organic acid pretreatment of eucalyptus for kraft dissolving pulp production. Materials (Basel), 13. https://doi.org/10.3390/ma13020361. DOI: https://doi.org/10.3390/ma13020361

Chiu, M., Prenner, E. (2011). Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci, 3, 39–59. https://doi.org/10.4103/0975-7406.76463. DOI: https://doi.org/10.4103/0975-7406.76463

Coradi, P. C., Lima, R. E., Padia, C. L., Alves, C. Z., Teodoro, P. E., Cândido, A. C. S. (2020). Soybean seed storage: Packaging technologies and conditions of storage environments. J Stored Prod Res, 89, 101709. https://doi.org/10.1016/j.jspr.2020.101709. DOI: https://doi.org/10.1016/j.jspr.2020.101709

De Sousa, R. R., Gouveia, J. R., Nacas, A. M., Tavares, L. B., Ito, N. M., De Moura, E. N., et al. (2019). Improvement of polypropylene adhesion by Kraft Lignin Incorporation. Mater Res, 22. https://doi.org/10.1590/1980-5373-MR-2018-0123. DOI: https://doi.org/10.1590/1980-5373-mr-2018-0123

De Souza, K. C., Correa, L.G., da Silva, T. B. V., Moreira, T. F. M., de Oliveira, A., Sakanaka, L. S., et al. (2020). Soy Protein Isolate Films Incorporated with Pinhão (Araucaria angustifolia (Bertol.) Kuntze) Extract for Potential Use as Edible Oil Active Packaging. Food Bioprocess Technol, 13, 998–1008. https://doi.org/10.1007/s11947-020-02454-5. DOI: https://doi.org/10.1007/s11947-020-02454-5

Dufresne, A., Castaño J. (2017). Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch/Staerke, 69,1-19. https://doi.org/10.1002/star.201500307. DOI: https://doi.org/10.1002/star.201500307

Fasiku (Oluwaseun), V., Omolo, C. A., Govender, T. (2020). Free radical-releasing systems for targeting biofilms. J Control Release, 322, 248–73. https://doi.org/10.1016/j.jconrel.2020.03.031. DOI: https://doi.org/10.1016/j.jconrel.2020.03.031

Ferreira, D. F. (2019). Sisvar: a Computer Analysis System To Fixed Effects Split Plot Type Designs. Rev Bras Biometria, 37, 529. https://doi.org/10.28951/rbb.v37i4.450. DOI: https://doi.org/10.28951/rbb.v37i4.450

Ferri, J. M., Garcia-Garcia, D., Rayón, E., Samper, M. D., Balart, R. (2020). Compatibilization and characterization of polylactide and biopolyethylene binary blends by non-reactive and reactive compatibilization approaches. Polymers (Basel), 12. https://doi.org/10.3390/POLYM12061344 DOI: https://doi.org/10.3390/polym12061344

Friesen, K., Chang, C., Nickerson, M. (2015). Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chem, 172, 18–23. https://doi.org/10.1016/j.foodchem.2014.08.128. DOI: https://doi.org/10.1016/j.foodchem.2014.08.128

Gopi, S., Loganathan, G. B., Sekar, B. K., Krishnamoorthy, R. K., Sekaran, V., Mohan, A. R. (2019). Influence of water absorption on glass fibre reinforced IPN composite pipes. Polimeros, 29, 1–8. https://doi.org/10.1590/0104-1428.02818. DOI: https://doi.org/10.1590/0104-1428.02818

Guerrero, P., Stefani, P. M., Ruseckaite, R. A., De La Caba, K. (2011). Functional properties of films based on soy protein isolate and gelatin processed by compression molding. J Food Eng, 105, 65-72. https://doi.org/10.1016/j.jfoodeng.2011.02.003. DOI: https://doi.org/10.1016/j.jfoodeng.2011.02.003

Guimarães, M., Botaro, V. R., Novack, K. M., Teixeira, F. G., Tonoli, G. H. D. (2015). High moisture strength of cassava starch/polyvinyl alcohol-compatible blends for the packaging and agricultural sectors. J Polym Res, 22. https://doi.org/10.1007/s10965-015-0834-z. DOI: https://doi.org/10.1007/s10965-015-0834-z

Gupta, A. K., Tulsyan, S., Thakur N., Sharma, V., Sinha, D. N., Mehrotra, R.( 2020). Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration. Regul Toxicol Pharmacol, 110, 104548. https://doi.org/10.1016/j.yrtph.2019.104548. DOI: https://doi.org/10.1016/j.yrtph.2019.104548

Han, Y., Yu, M., Wang, L. (2018). Preparation and characterization of antioxidant soy protein isolate films incorporating licorice residue extract. Food Hydrocoll, 75, 13–21. https://doi.org/10.1016/j.foodhyd.2017.09.020. DOI: https://doi.org/10.1016/j.foodhyd.2017.09.020

Hossain, K. M. Z., Felfel, R. M., Ogbilikana, P. S., Thakker, D., Grant, D. M., Scotchford, C. A., et al. (2018). Single Solvent-Based Film Casting Method for the Production of Porous Polymer Films. Macromol Mater Eng, 303, 1–7. https://doi.org/10.1002/mame.201700628. DOI: https://doi.org/10.1002/mame.201700628

Huang, J., Wigent, R. J., Schwartz, J. B. (2008). Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J Pharm Sci, 97, 251-262. https://doi.org/10.1002/jps.21072. DOI: https://doi.org/10.1002/jps.21072

Imre, B., Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J, 49, 1215-1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019. DOI: https://doi.org/10.1016/j.eurpolymj.2013.01.019

Ivorra-Martinez, J., Verdu, I., Fenollar, O., Sanchez-Nacher, L., Balart, R., Quiles-Carrillo, L. (2020). Manufacturing and properties of binary blend from bacterial polyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and

poly(caprolactone) with improved toughness. Polymers (Basel), 12. https://doi.org/10.3390/POLYM12051118. DOI: https://doi.org/10.3390/polym12051118

Jawerth M. E., Brett, C. J., Terrier, C., Larsson, P. T., Lawoko, M., Roth, S. V., et al. (2020). Mechanical and Morphological Properties of Lignin-Based Thermosets. ACS Appl Polym Mater, 2, 668-676. https://doi.org/10.1021/acsapm.9b01007. DOI: https://doi.org/10.1021/acsapm.9b01007

Jiang, J., Xiong, Y. L., Newman, M. C., Rentfrow, G. K. (2012). Structure-modifying alkaline and acidic pH-shifting processes promote film formation of soy proteins. Food Chem, 132, 1944-1950. https://doi.org/10.1016/j.foodchem.2011.12.030. DOI: https://doi.org/10.1016/j.foodchem.2011.12.030

Kiruthika, S., Malathi, M., Selvasekarapandian, S., Tamilarasan, K., Maheshwari, T. (2020). Conducting biopolymer electrolyte based on pectin with magnesium chloride salt for magnesium battery application. Polym Bull, 77, 6299-6317. https://doi.org/10.1007/s00289-019-03071-9. DOI: https://doi.org/10.1007/s00289-019-03071-9

Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A., Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innov Food Sci Emerg Technol, 11, 503-510. https://doi.org/10.1016/j.ifset.2010.01.006. DOI: https://doi.org/10.1016/j.ifset.2010.01.006

Kristoffersen, K. A., Van Amerongen, A., Böcker, U., Lindberg, D., Wubshet, S. G., De Vogel-Van Den Bosch, H., et al. (2020). Fourier-transform infrared spectroscopy for monitoring proteolytic reactions using dry-films treated with trifluoroacetic acid. Sci Rep, 10, 1-10. https://doi.org/10.1038/s41598-020-64583-3. DOI: https://doi.org/10.1038/s41598-020-64583-3

Koshy, R. R., Mary, S. K., Thomas, S., Pothan, L. A. (2015). Environment friendly green composites based on soy protein isolate - A review. Food Hydrocoll, 50, 174–92. https://doi.org/10.1016/j.foodhyd.2015.04.023. DOI: https://doi.org/10.1016/j.foodhyd.2015.04.023

Kumar Thakur, V., Kumari Thakur, M., Raghavan, P., Kessler M. R. (2014). Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustain Chem & Eng, 2, 1072–1092.

https://doi.org/10.1021/sc500087z. DOI: https://doi.org/10.1021/sc500087z

Laguerre, M., Giraldo, L. J., Lecomte, J., Figueroa-Espinoza, M. C., Baréa, B., Weiss, J., et al. (2010). Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: A parabolic effect of the chain length of rosmarinate esters. J Agric Food Chem, 58, 2869-2876. https://doi.org/10.1021/jf904119v. DOI: https://doi.org/10.1021/jf904119v

Laurichesse, S., Avérous, L. (2014). Chemical modification of lignins: Towards biobased polymers. Prog Polym Sci, 39, 1266–90. https://doi.org/10.1016/j.progpolymsci.2013.11.004. DOI: https://doi.org/10.1016/j.progpolymsci.2013.11.004

Li, K., Jin, S., Chen, H., He, J., Li, J. (2017). A high-performance Soy protein isolate-based nanocomposite film modified with microcrystalline cellulose and Cu and Zn nanoclusters. Polymers (Basel), 9. https://doi.org/10.3390/polym9050167. DOI: https://doi.org/10.3390/polym9050167

Li, J., Jiang, S., Wei, Y., Li, X., Shi, S. Q., Zhang, W., et al. (2021). Facile fabrication of tough, strong, and biodegradable soy protein-based composite films with excellent UV-blocking performance. Compos Part B Eng, 211, 108645. https://doi.org/10.1016/j.compositesb.2021.108645 DOI: https://doi.org/10.1016/j.compositesb.2021.108645

Li, T., Xia, N., Xu, L., Zhang, H., Zhang, H., Chi, Y., et al. (2021). Preparation, characterization and application of SPI-based blend film with antioxidant activity. Food Packag Shelf Life, 27, 100614. https://doi.org/10.1016/j.fpsl.2020.100614. DOI: https://doi.org/10.1016/j.fpsl.2020.100614

Liu, X., Song, R., Zhang, W., Qi, C., Zhang, S., Li, J. (2017) Development of eco-friendly soy protein isolate films with high mechanical properties through HNTs, PVA, and PTGE synergism effect. Sci Rep, 7. https://doi.org/10.1038/srep44289. DOI: https://doi.org/10.1038/srep44289

Ma, Q., Liang, S., Xu, S., Li, J., Wang L. (2019). Characterization of antioxidant properties of soy bean protein-based films with Cortex Phellodendri extract in extending the shelf life of lipid. Food Packag Shelf Life, 22, 100413. https://doi.org/10.1016/j.fpsl.2019.100413. DOI: https://doi.org/10.1016/j.fpsl.2019.100413

Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., Zaritzky, N. E.(2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J Food Eng, 75, 453–60. https://doi.org/10.1016/j.jfoodeng.2005.04.031. DOI: https://doi.org/10.1016/j.jfoodeng.2005.04.031

Mauri, A. N., Añón, M. C. (2008) Mechanical and physical properties of soy protein films with pH-modified microstructures. Food Sci Technol Int, 14, 119-125. https://doi.org/10.1177/1082013208092130. DOI: https://doi.org/10.1177/1082013208092130

Menezes Filho, A. C. P., Oliveira Filho, J. G., Porfiro, C. A. (2021). Development and evaluation of a biodegradable packaging from the aryl of the fruit of Hymenaea stigonocarpa Mart. ex Hayne. Sci Elec Arch, 14, 11-18. https://doi.org/10.36560/14820211322 DOI: https://doi.org/10.36560/14820211322

Menezes Filho, A. C. P., Ventura, M. V. A., Alves, I., Taques, A. S., Batista-Ventura, H. R. F., Castro, C. F. S., Teixeira, M. B., Soares, F. A. L. (2022). Phytochemical prospection, total flavonoids and total phenolic and antioxidant activity of the mushroom extract Scleroderma verrucosum (Bull.) Pers. Brazilian Journal of Science, 1(1), 1-7.

Menezes Filho, A. C. P., Ventura, M. V. A., Castro, C. F. S., Taques, A. S., Alves, I. (2022). Phytochemistry and biological activities of the floral hydroethanolic extract of Ipomoea carnea Jacq. (Convolvulaceae). Brazilian Journal of Science, 1(2), 1-7.

Mohanan, A., Nickerson, M. T., Ghosh, S. (2018). Oxidative stability of flaxseed oil: Effect of hydrophilic, hydrophobic

and intermediate polarity antioxidants. Food Chem, 266, 524–33. https://doi.org/10.1016/j.foodchem.2018.05.117. DOI: https://doi.org/10.1016/j.foodchem.2018.05.117

Mora, A. S., Tayouo, R., Boutevin, B., David, G., Caillol, S. (2020). A perspective approach on the amine reactivity and the hydrogen bonds effect on epoxy-amine systems. Eur Polym J, 123. https://doi.org/10.1016/j.eurpolymj.2019.109460. DOI: https://doi.org/10.1016/j.eurpolymj.2019.109460

Müller, C. M. O., Laurindo, J. B., Yamashita, F. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind Crops Prod, 33, 605–10. https://doi.org/10.1016/j.indcrop.2010.12.021. DOI: https://doi.org/10.1016/j.indcrop.2010.12.021

Munteanu, S. B., Vasile, C. (2020). Vegetable additives in food packaging polymeric materials. Polymers (Basel), 12, 1-36. https://doi.org/10.3390/polym12010028. DOI: https://doi.org/10.3390/polym12010028

Nandane, A. S., Jain, R. (2015). Study of mechanical properties of soy protein based edible film as affected by its composition and process parameters by using RSM. J Food Sci Technol, 52, 3645-650. https://doi.org/10.1007/s13197- DOI: https://doi.org/10.1007/s13197-014-1417-4

-1417-4.

Ortega-Toro, R, Jiménez, A, Talens, P, Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocoll, 38, 66-75. https://doi.org/10.1016/j.foodhyd.2013.11.011. DOI: https://doi.org/10.1016/j.foodhyd.2013.11.011

Paglione, I. dos S., Galindo, M. V., de Souza, K. C., Yamashita, F., Grosso, C. R. F., Sakanaka, L. S., et al. (2019). Optimization of the conditions for producing soy protein isolate films. Emirates J Food Agric, 31, 297–303. https://doi.org/10.9755/ejfa.2019.v31.i4.1933. DOI: https://doi.org/10.9755/ejfa.2019.v31.i4.1933

Peng, Y., Nair, S. S., Chen, H., Yan, N., Cao, J. (2018). Effects of Lignin Content on Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Micro Particles of Spray Dried Cellulose Nanofibrils. ACS Sustain Chem & Eng, 6, 11078–11086. https://doi.org/10.1021/acssuschemeng.8b02544. DOI: https://doi.org/10.1021/acssuschemeng.8b02544

Pradyawong, S., Qi, G., Li, N., Sun, X. S., Wang, D. (2017). Adhesion properties of soy protein adhesives enhanced by biomass lignin. Int J Adhes Adhes, 75, 66-73. https://doi.org/10.1016/j.ijadhadh.2017.02.017. DOI: https://doi.org/10.1016/j.ijadhadh.2017.02.017

Qin, Z., Mo, L., Liao, M., He, H., Sun, J. (2019). Preparation and characterization of soy protein isolate-based nanocomposite films with cellulose nanofibers and nano-silica via silane grafting. Polymers (Basel), 11. https://doi.org/10.3390/polym11111835. DOI: https://doi.org/10.3390/polym11111835

Rajha, H. N., Abi-Khattar, A. M., El Kantar, S., Boussetta, N., Lebovka, N., Maroun, R. G., et al. (2019). Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges. Innov Food Sci Emerg Technol, 58, 102212.

https://doi.org/10.1016/j.ifset.2019.102212. DOI: https://doi.org/10.1016/j.ifset.2019.102212

Ray, S., Cooney, R. P. (2018) Thermal degradation of polymer and polymer composites. Handb. Environ. Degrad. Mater. Third Ed., 185–206. https://doi.org/10.1016/B978-0-323-52472-8.00009-5. DOI: https://doi.org/10.1016/B978-0-323-52472-8.00009-5

Rehman, A., Jafari, S. M., Aadil, R. M., Assadpour, E., Randhawa, M. A., Mahmood, S. (2020). Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol, 101, 106–21. https://doi.org/10.1016/j.tifs.2020.05.001. DOI: https://doi.org/10.1016/j.tifs.2020.05.001

Sattler, K. (2019). Advances in engineering research. 29. DOI: https://doi.org/10.1007/978-3-030-37497-6

Siddaiah, T., Ojha, P., Kumar, N. O. G. V. R., Ramu, C. (2018). Structural, Optical and Thermal Characterizations of PVA/MAA:EA Polyblend Films. Mater Res, 21. https://doi.org/10.1590/1980-5373-mr-2017-0987. DOI: https://doi.org/10.1590/1980-5373-mr-2017-0987

Siracusa, V. (2012). Food packaging permeability behaviour: A report. Int J Polym Sci, 2012. https://doi.org/10.1155/2012/302029. DOI: https://doi.org/10.1155/2012/302029

Su, L., Huang, J., Li, H., Pan, Y., Zhu, B., Zhao, Y., et al. (2021). Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging. Int J Biol Macromol, 172, 231-240. https://doi.org/10.1016/j.ijbiomac.2021.01.056. DOI: https://doi.org/10.1016/j.ijbiomac.2021.01.056

Tang, C. H., Chen, Z., Li, L., Yang, X. Q. (2006). Effects of transglutaminase treatment on the thermal properties of soy protein isolates. Food Res Int, 39, 704-711. https://doi.org/10.1016/j.foodres.2006.01.012. DOI: https://doi.org/10.1016/j.foodres.2006.01.012

Tayeb, A. H., Tajvidi, M., Bousfield, D. (2020). Paper-based oil barrier packaging using lignin-containing cellulose nanofibrils. Molecules, 25. https://doi.org/10.3390/molecules25061344. DOI: https://doi.org/10.3390/molecules25061344

Tylewicz, U., Oliveira, G., Alminger, M., Nohynek, L., Dalla Rosa, M., Romani, S. (2020). Antioxidant and antimicrobial properties of organic fruits subjected to PEF-assisted osmotic dehydration. Innov Food Sci Emerg Technol, 62, 102341. https://doi.org/10.1016/j.ifset.2020.102341. DOI: https://doi.org/10.1016/j.ifset.2020.102341

Vilas, C., Mauricio-Iglesias, M., García, M. R. (2020). Model-based design of smart active packaging systems with antimicrobial activity. Food Packag Shelf Life, 24, 100446. https://doi.org/10.1016/j.fpsl.2019.100446. DOI: https://doi.org/10.1016/j.fpsl.2019.100446

Wang, C., Jiang, L., Wei, D., Li, Y., Sui, X., Wang, Z., et al. (2011). Effect of secondary structure determined by FTIR spectra on surface hydrophobicity of soybean protein isolate. Procedia Eng, 15, 4819–4827. https://doi.org/10.1016/j.proeng.2011.08.900. DOI: https://doi.org/10.1016/j.proeng.2011.08.900

Wang, H., Hu, D., Ma, Q., Wang, L. (2016) Physical and antioxidant properties of flexible soy protein isolate films by incorporating chestnut (Castanea mollissima) bur extracts. LWT - Food Sci Technol, 71, 33–39. https://doi.org/10.1016/j.lwt.2016.03.025. DOI: https://doi.org/10.1016/j.lwt.2016.03.025

Wang, H., Wang, L. (2017). Developing a bio-based packaging film from soya by-products incorporated with valonea tannin. J Clean Prod, 143, 624–33. https://doi.org/10.1016/j.jclepro.2016.12.064. DOI: https://doi.org/10.1016/j.jclepro.2016.12.064

Wang, K., Amin, K., An, Z., Cai, Z., Chen, H., Chen, H., et al. (2020). Advanced functional polymer materials. Mater Chem Front, 4, 1803-915. https://doi.org/10.1039/d0qm00025f. DOI: https://doi.org/10.1039/D0QM00025F

Yan, Z., Li, Q., Zhang, P. (2017). Soy Protein Isolate and Glycerol Hydrogen Bonding Using Two-Dimensional Correlation (2D-COS) Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy. Appl Spectrosc, 71, 2437–45. https://doi.org/10.1177/0003702817710249. DOI: https://doi.org/10.1177/0003702817710249

Zadeh, E. M., O’Keefe, S. F., Kim, Y. T. (2018). Utilization of Lignin in Biopolymeric Packaging Films. ACS Omega, 37388–98. https://doi.org/10.1021/acsomega.7b01341. DOI: https://doi.org/10.1021/acsomega.7b01341

Zhang, S., Xia, C., Dong, Y., Yan, Y., Li, J., Shi, S. Q., et al. (2016). Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal. Ind Crops Prod, 80, 207–13. https://doi.org/10.1016/j.indcrop.2015.11.070. DOI: https://doi.org/10.1016/j.indcrop.2015.11.070

Zhong, Y., Godwin, P., Jin, Y., Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv Ind Eng Polym Res, 3, 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002. DOI: https://doi.org/10.1016/j.aiepr.2019.11.002

Zhu, J., Yan, C., Zhang, X., Yang, C., Jiang, M., Zhang, X. (2020). A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors. Prog Energy Combust Sci, 76, 100788. https://doi.org/10.1016/j.pecs.2019.100788. DOI: https://doi.org/10.1016/j.pecs.2019.100788

Downloads

Published

2022-02-01

How to Cite

Freitas, A. J. de ., Souza, N. L. V. dos S., Ferreira e Silva, K., Santos, V. W. R. dos, Valente, I. L., Dias, M. V. ., Marconcini, J. M., & Mori, F. A. (2022). Production and characterization of thin films based on soy protein isolate with kraft lignin and tannins obtained by casting. Brazilian Journal of Science, 1(2), 28–45. https://doi.org/10.14295/bjs.v1i2.74