Biodegradable films of arrowroot starch (Maranta arundinacea) incorporated with floral extract of Tabebuia impetiginosa and copper sulfate: physical and physicochemical properties, and biodegradability and antibacterial activities
DOI:
https://doi.org/10.14295/bjs.v1i2.112Keywords:
Active packaging, Escherichia coli, Salmonella Thyphymurium, BiopolymersAbstract
Biodegradable films of arrowroot starch were incorporated with floral extract of Tabebuia impetiginosa and copper sulfate and determined to the physical, physicochemical, biodegradability and antibacterial properties. The films were produced from arrowroot starch with different concentrations of glycerol, floral extract and copper sulfate solution. Thickness, humidity, solubility, biodegradability, water vapor colorimetry, color density, transparency, FT-IR and antibacterial activity tests were performed for Escherichia coli, Staphylococcus aureus, Salmonella serovar Thyphymurium and serovar Enteritidis. The films had a thickness between 0.23-0.33 mm, humidity between 8.53-12.22%, biodegradability between 88.98-100%, water vapor between 255.79-433.57 g m2 day, L* between 4.77-22.36; a* between -1.20 to 0.30; b* between -1.89 to 0.13; color density between -0.09 to 0.180; maximum transparency of 80%, inhibition activity between 9.13-26.26 mm for E. coli, 5.83-24.14 mm for S. aureus, 13-42-19.39 mm for S. serovar Thyphymurium, and 22.14-26.89 mm for S. serovar Enteritidis. The arrowroot biodegradable films incorporated with floral extract of Tabebuia impetiginosa and copper sulfate showed good physical, physicochemical, biodegradability and potential antibacterial activity.
References
Balti, R., Mansour, M. B., Sayari, N., Yacoubi, L., Rabaoui, L., Brodu, N., Massé, A. (2017). Development and characterization of bioactive edible films from spider crab (Maja crispata). International Journal of Biological Macromolecules, 105, 1464-1472. https://doi.org/10.1016/j.ijbiomac.2017.07.046 DOI: https://doi.org/10.1016/j.ijbiomac.2017.07.046
Bertuzzi, M. A., Armada, M., Gottifredi, J.C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82(1), 17-25. http://dx.doi.org/10.1016/j.jfoodeng.2006.12.016 DOI: https://doi.org/10.1016/j.jfoodeng.2006.12.016
Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., Kenny, J.M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids, 35, 463-470. https://doi.org/10.1016/j.foodhyd.2013.07.002 DOI: https://doi.org/10.1016/j.foodhyd.2013.07.002
Caetano, K. S., Lopes, N. A., Costa, T. M. H., Brandelli, A., Rodrigues, E., Flôres, S. H., Cladera-Olivera, F. (2018). Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, 16, 138-147. https://doi.org/10.1016/j.fpsl.2018.03.006 DOI: https://doi.org/10.1016/j.fpsl.2018.03.006
Chacon, W. D. C., Lima, K. T. S., Valencia, G. A., Henao, A. C. A. (2021). Physicochemical properties of potato starch nanoparticles produced by ani-solvent precipitation. Starch, 73(1-2). https://doi.org/10.1002/star.202000086 DOI: https://doi.org/10.1002/star.202000086
Costa, D. M. A., Santos, A. F., Silva, E. D., Silva, I. A. (2017). Desenvolvimento e caracterização de filmes à base de amido de feijão macáçar (Vigna unguiculata (L.) Wap). Holos, 7, 2-16. http://www.redalyc.org/articulo.oa?id=481554852002 DOI: https://doi.org/10.15628/holos.2017.6318
Fathi, N., Almasi, H., Pirouzifard, M. K. (2018). Effect of ultraviolet radiation on morphological and physicochemical properties of sesame protein isolate based edible films. Food Hydrocolloids, 85, 136-143. https://doi.org/10.1016/j.foodhyd.2018.07.018 DOI: https://doi.org/10.1016/j.foodhyd.2018.07.018
Hosseini, S. F., Rezaei, M., Zandi, M., Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Industrial Crops and Products, 67, 403-413. DOI: https://doi.org/10.1016/j.indcrop.2015.01.062
Issa, A., Ibrahim, S. A., Tahergorabi, R. (2017). Impact of sweet potato starch-based nanocomposite films activated with thyme essential oil on the shelf-life of baby spinach leaves. Foods, 6(6), e43. http://dx.doi.org/10.3390/foods6060043 DOI: https://doi.org/10.3390/foods6060043
Jayakumar, A., Suganthi, A. (2017). Biochemical and phytochemical analysis of Maranta arundinacea (L.) rhizome. International Journal of Research in Pharmacy and Pharmaceutical Sciences, 2(3), 26-30.
Kalpana, S., Priyadarshini, S. R., Maria Leena, M., Moses, J. A., Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145-157. http://dx.doi.org/10.1016/j.tifs.2019.09.008 DOI: https://doi.org/10.1016/j.tifs.2019.09.008
Kanmani, P., Rhim, J.-W. (2014). Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers, 102, 708-716. https://doi.org/10.1016/j.carbpol.2013.10.099 DOI: https://doi.org/10.1016/j.carbpol.2013.10.099
Kim, S. R. B., Choi, Y. G., Kim, J. Y., Lim, S. T. (2015). Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. Lebensmittel-Wissenschaft + Technologie, 64(1), 475-482. http://dx.doi.org/10.1016/j.lwt.2015.05.009 DOI: https://doi.org/10.1016/j.lwt.2015.05.009
Kurt, A., Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50-58. DOI: https://doi.org/10.1016/j.carbpol.2014.01.003
Madineni, M. N., Faiza, S., Surekha, R. S., Ravi, R., Guha, M. (2012). Morphological, structural, and functional properties of Maranta (Maranta arundinacea L.) starch. Food Science and Biotechnology, 21(3), 747-752. https://doi.org/10.1007/s10068-012-0097-y DOI: https://doi.org/10.1007/s10068-012-0097-y
Martucci, J. F., Ruseckaite, R.A. (2009). Tensile properties, barrier properties, and biodegradation in soil of compression-molded gelatin-dialdehyde starch films. Journal of Applied Polymer Science, 112(4), 2166-2178. http://dx.doi.org/10.1002/app.29695 DOI: https://doi.org/10.1002/app.29695
Olivatto, G. P., Carreira, R., Tornisielo, V. L., Montagner, C. C. (2018). Microplásticos: Contaminantes de preocupação global no Antropoceno. Revista Virtual de Química, 10(6), 1968-1989. http://dx.doi.org/10.21577/1984-6835.20180125 DOI: https://doi.org/10.21577/1984-6835.20180125
Oliveira Filho, J. G., Deus, I. P. B., Valadares, A. C. F., Fernandes, C. C., Estevam, E. B. B., Egea, M. B. (2020). Chitosan film with Citrus limonia essential oil: Physical and morphological properties and antibacterial activity. Colloids and Interfaces, 4(2). https://doi.org/10.3390/colloids4020018 DOI: https://doi.org/10.3390/colloids4020018
Roy, S., Rhim, J. W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules, 148, 666-676. https://doi.org/10.1016/j.ijbiomac.2020.01.204 DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.204
Santos, L. S., Fernandes, C. C., Santos, L. S., Deus, I. P. B., Sousa, T. L., Miranda, M. L. D. (2021). Ethanolic extract from Capsicum chinense Jacq. ripe fruits: phenolic compounds, antioxidant activity and development of biodegradable films. Food Science and Technology, 41(2), 497-504. DOI: https://doi.org/10.1590/fst.08220
Sharma, R., Jafari, S. M., Sharma, S. (2020). Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control, 112. https://doi.org/10.1016/j.foodcont.2020.107086 DOI: https://doi.org/10.1016/j.foodcont.2020.107086
Shankar, S., Wang, L. F., Rhim, J. W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers, 169, 264-271. https://doi.org/10.1016/j.carbpol.2017.04.025 DOI: https://doi.org/10.1016/j.carbpol.2017.04.025
Luchese, C. L., Garrido, T., Spada, J. C., Tessaro, I.C., La Caba, K. (2018). Development and characterization of cassava starch incorporated with blueberry pomace. International Journal of Biological Macromolecules, 106, 834-839.
https://doi.org/10.1016/j.ijbiomac.2017.08.083 DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.083
Medina-Jaramillo, C., Ochoa-YepeS, O., Bernal, C., Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176, 187-194. https://doi.org/10.1016/j.carbpol.2017.08.079 DOI: https://doi.org/10.1016/j.carbpol.2017.08.079
Menezes Filho, A. C.P, Ventura, M. V. A., Castro, C. F. S., Favareto, R., Belisário, C. M., Teixeira, M. B., SoareS, F. A. L. (2022). Phytochemical and physicochemical evaluation, and photoprotection, antioxidant, antifungal, and antibacterial activities of the floral extract of Schubertia grandiflora Mart. & Zucc. (Apocynaceae). Brazilian Journal of Science, 1(1), 8-22.
Nogueira, G. F., Fakhouri, F. M., Oliveira, R. A. (2018). Extration and characterization of arrowroot (Maranta arundinacea) L. starch and its application in edible films. Carbohydrate Polymers, 186, 64-72. https://doi.org/10.1016/j.carbpol.2018.01.024 DOI: https://doi.org/10.1016/j.carbpol.2018.01.024
Norajit, K., Kim, K. M., Ryu, G. H. (2010). Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. Journal of Food Engineering, 98, 377-384. https://doi.org/10.1016/j.jfoodeng.2010.01.015 DOI: https://doi.org/10.1016/j.jfoodeng.2010.01.015
Nor Adilah, A., Jamilah, B., Noranizan, M. A., Nur Hanani, Z.A. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1-7. https://doi.org/10.1016/j.fpsl.2018.01.006 DOI: https://doi.org/10.1016/j.fpsl.2018.01.006
PiñeroS-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488-495. http://dx.doi.org/10.1016/j.foodhyd.2016.09.034 DOI: https://doi.org/10.1016/j.foodhyd.2016.09.034
Rambabu, K., Bharath, G., Banat, F., Show, P. L., Cocoletzi, H. H. (2019). Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126, 1234-1243. http://dx.doi.org/10.1016/j.ijbiomac.2018.12.196 DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.196
Shen, Z., Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. https://doi.org/10.1016/j.ijbiomac.2014.11.046 DOI: https://doi.org/10.1016/j.ijbiomac.2014.11.046
Shen, X. L., Wu, J. M., Chen, Y., Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285-290. https://doi.org/10.1016/j.foodhyd.2009.10.003 DOI: https://doi.org/10.1016/j.foodhyd.2009.10.003
Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079-1089. http://dx.doi.org/10.1016/j.ijbiomac.2019.03.190 DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.190
Valadares, A. C. F, Fernandes, C. C., Oliveira Filho, J. G., Deus, I. P. B., Lima, T. M., Silva, E. A. J., Souchie, E. L., Miranda, M. L. D. (2020). Incorporation of essential oils from Piper aduncum into films made from arrowroot starch: effect on their physicochemical properties and antifungal activity. Química Nova, 43(6), 729-737. http://dx.doi.org/10.21577/0100-4042.20170530 DOI: https://doi.org/10.21577/0100-4042.20170530
Xu, Y. X., Kim, K. M., Hanna, M. A., Nag, D. (2005). Chitosan-starch composite film: Preparation and characterization. Industrial Crops and Products, 21(2), 185-192. https://doi.org/10.1016/j.indcrop.2004.03.002 DOI: https://doi.org/10.1016/j.indcrop.2004.03.002
Youseef, H. F., El-Naggar, M. E., Fouda, F. K., Youseef, A. M. (2019). Antimicrobial packaging film based on biodegradable CMC/PVA-zeolite doped with noble metal cations. Food Packaging and Shelf Life, 22. DOI: https://doi.org/10.1016/j.fpsl.2019.100378
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Antonio Carlos Pereira de Menezes Filho, Matheus Vinicius Abadia Ventura, Hellen Regina Fernandes Batista-Ventura, Carlos Frederico de Souza Castro, Marconi Batista Teixeira, Aparecida Sofia Taques, Ivan Alves, Frederico Antônio Loureiro Soares
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.