Biodegradable films of arrowroot starch (Maranta arundinacea) incorporated with floral extract of Tabebuia impetiginosa and copper sulfate: physical and physicochemical properties, and biodegradability and antibacterial activities

Authors

  • Antonio Carlos Pereira de Menezes Filho Goiano Federal Institute - Rio Verde Campus, Brazil
  • Matheus Vinicius Abadia Ventura Goiano Federal Institute - Rio Verde Campus, Brazil
  • Hellen Regina Fernandes Batista-Ventura Goiano Federal Institute - Rio Verde Campus, Brazil
  • Carlos Frederico de Souza Castro Goiano Federal Institute - Rio Verde Campus, Brazil
  • Marconi Batista Teixeira Goiano Federal Institute - Rio Verde Campus, Brazil
  • Aparecida Sofia Taques Mato Grosso Federal Institute - Bela Vista Campus, Bela Vista, Brazil
  • Ivan Alves Goiano Federal Institute - Ipameri Campus, Ipameri, Brazil
  • Frederico Antônio Loureiro Soares Goiano Federal Institute - Rio Verde Campus, Brazil

DOI:

https://doi.org/10.14295/bjs.v1i2.112

Keywords:

Active packaging, Escherichia coli, Salmonella Thyphymurium, Biopolymers

Abstract

Biodegradable films of arrowroot starch were incorporated with floral extract of Tabebuia impetiginosa and copper sulfate and determined to the physical, physicochemical, biodegradability and antibacterial properties. The films were produced from arrowroot starch with different concentrations of glycerol, floral extract and copper sulfate solution. Thickness, humidity, solubility, biodegradability, water vapor colorimetry, color density, transparency, FT-IR and antibacterial activity tests were performed for Escherichia coli, Staphylococcus aureus, Salmonella serovar Thyphymurium and serovar Enteritidis. The films had a thickness between 0.23-0.33 mm, humidity between 8.53-12.22%, biodegradability between 88.98-100%, water vapor between 255.79-433.57 g m2 day, L* between 4.77-22.36; a* between -1.20 to 0.30; b* between -1.89 to 0.13; color density between -0.09 to 0.180; maximum transparency of 80%, inhibition activity between 9.13-26.26 mm for E. coli, 5.83-24.14 mm for S. aureus, 13-42-19.39 mm for S. serovar Thyphymurium, and 22.14-26.89 mm for S. serovar Enteritidis. The arrowroot biodegradable films incorporated with floral extract of Tabebuia impetiginosa and copper sulfate showed good physical, physicochemical, biodegradability and potential antibacterial activity.

References

Balti, R., Mansour, M. B., Sayari, N., Yacoubi, L., Rabaoui, L., Brodu, N., Massé, A. (2017). Development and characterization of bioactive edible films from spider crab (Maja crispata). International Journal of Biological Macromolecules, 105, 1464-1472. https://doi.org/10.1016/j.ijbiomac.2017.07.046 DOI: https://doi.org/10.1016/j.ijbiomac.2017.07.046

Bertuzzi, M. A., Armada, M., Gottifredi, J.C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82(1), 17-25. http://dx.doi.org/10.1016/j.jfoodeng.2006.12.016 DOI: https://doi.org/10.1016/j.jfoodeng.2006.12.016

Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., Kenny, J.M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids, 35, 463-470. https://doi.org/10.1016/j.foodhyd.2013.07.002 DOI: https://doi.org/10.1016/j.foodhyd.2013.07.002

Caetano, K. S., Lopes, N. A., Costa, T. M. H., Brandelli, A., Rodrigues, E., Flôres, S. H., Cladera-Olivera, F. (2018). Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, 16, 138-147. https://doi.org/10.1016/j.fpsl.2018.03.006 DOI: https://doi.org/10.1016/j.fpsl.2018.03.006

Chacon, W. D. C., Lima, K. T. S., Valencia, G. A., Henao, A. C. A. (2021). Physicochemical properties of potato starch nanoparticles produced by ani-solvent precipitation. Starch, 73(1-2). https://doi.org/10.1002/star.202000086 DOI: https://doi.org/10.1002/star.202000086

Costa, D. M. A., Santos, A. F., Silva, E. D., Silva, I. A. (2017). Desenvolvimento e caracterização de filmes à base de amido de feijão macáçar (Vigna unguiculata (L.) Wap). Holos, 7, 2-16. http://www.redalyc.org/articulo.oa?id=481554852002 DOI: https://doi.org/10.15628/holos.2017.6318

Fathi, N., Almasi, H., Pirouzifard, M. K. (2018). Effect of ultraviolet radiation on morphological and physicochemical properties of sesame protein isolate based edible films. Food Hydrocolloids, 85, 136-143. https://doi.org/10.1016/j.foodhyd.2018.07.018 DOI: https://doi.org/10.1016/j.foodhyd.2018.07.018

Hosseini, S. F., Rezaei, M., Zandi, M., Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Industrial Crops and Products, 67, 403-413. DOI: https://doi.org/10.1016/j.indcrop.2015.01.062

Issa, A., Ibrahim, S. A., Tahergorabi, R. (2017). Impact of sweet potato starch-based nanocomposite films activated with thyme essential oil on the shelf-life of baby spinach leaves. Foods, 6(6), e43. http://dx.doi.org/10.3390/foods6060043 DOI: https://doi.org/10.3390/foods6060043

Jayakumar, A., Suganthi, A. (2017). Biochemical and phytochemical analysis of Maranta arundinacea (L.) rhizome. International Journal of Research in Pharmacy and Pharmaceutical Sciences, 2(3), 26-30.

Kalpana, S., Priyadarshini, S. R., Maria Leena, M., Moses, J. A., Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145-157. http://dx.doi.org/10.1016/j.tifs.2019.09.008 DOI: https://doi.org/10.1016/j.tifs.2019.09.008

Kanmani, P., Rhim, J.-W. (2014). Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers, 102, 708-716. https://doi.org/10.1016/j.carbpol.2013.10.099 DOI: https://doi.org/10.1016/j.carbpol.2013.10.099

Kim, S. R. B., Choi, Y. G., Kim, J. Y., Lim, S. T. (2015). Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. Lebensmittel-Wissenschaft + Technologie, 64(1), 475-482. http://dx.doi.org/10.1016/j.lwt.2015.05.009 DOI: https://doi.org/10.1016/j.lwt.2015.05.009

Kurt, A., Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50-58. DOI: https://doi.org/10.1016/j.carbpol.2014.01.003

Madineni, M. N., Faiza, S., Surekha, R. S., Ravi, R., Guha, M. (2012). Morphological, structural, and functional properties of Maranta (Maranta arundinacea L.) starch. Food Science and Biotechnology, 21(3), 747-752. https://doi.org/10.1007/s10068-012-0097-y DOI: https://doi.org/10.1007/s10068-012-0097-y

Martucci, J. F., Ruseckaite, R.A. (2009). Tensile properties, barrier properties, and biodegradation in soil of compression-molded gelatin-dialdehyde starch films. Journal of Applied Polymer Science, 112(4), 2166-2178. http://dx.doi.org/10.1002/app.29695 DOI: https://doi.org/10.1002/app.29695

Olivatto, G. P., Carreira, R., Tornisielo, V. L., Montagner, C. C. (2018). Microplásticos: Contaminantes de preocupação global no Antropoceno. Revista Virtual de Química, 10(6), 1968-1989. http://dx.doi.org/10.21577/1984-6835.20180125 DOI: https://doi.org/10.21577/1984-6835.20180125

Oliveira Filho, J. G., Deus, I. P. B., Valadares, A. C. F., Fernandes, C. C., Estevam, E. B. B., Egea, M. B. (2020). Chitosan film with Citrus limonia essential oil: Physical and morphological properties and antibacterial activity. Colloids and Interfaces, 4(2). https://doi.org/10.3390/colloids4020018 DOI: https://doi.org/10.3390/colloids4020018

Roy, S., Rhim, J. W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules, 148, 666-676. https://doi.org/10.1016/j.ijbiomac.2020.01.204 DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.204

Santos, L. S., Fernandes, C. C., Santos, L. S., Deus, I. P. B., Sousa, T. L., Miranda, M. L. D. (2021). Ethanolic extract from Capsicum chinense Jacq. ripe fruits: phenolic compounds, antioxidant activity and development of biodegradable films. Food Science and Technology, 41(2), 497-504. DOI: https://doi.org/10.1590/fst.08220

Sharma, R., Jafari, S. M., Sharma, S. (2020). Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control, 112. https://doi.org/10.1016/j.foodcont.2020.107086 DOI: https://doi.org/10.1016/j.foodcont.2020.107086

Shankar, S., Wang, L. F., Rhim, J. W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers, 169, 264-271. https://doi.org/10.1016/j.carbpol.2017.04.025 DOI: https://doi.org/10.1016/j.carbpol.2017.04.025

Luchese, C. L., Garrido, T., Spada, J. C., Tessaro, I.C., La Caba, K. (2018). Development and characterization of cassava starch incorporated with blueberry pomace. International Journal of Biological Macromolecules, 106, 834-839.

https://doi.org/10.1016/j.ijbiomac.2017.08.083 DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.083

Medina-Jaramillo, C., Ochoa-YepeS, O., Bernal, C., Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176, 187-194. https://doi.org/10.1016/j.carbpol.2017.08.079 DOI: https://doi.org/10.1016/j.carbpol.2017.08.079

Menezes Filho, A. C.P, Ventura, M. V. A., Castro, C. F. S., Favareto, R., Belisário, C. M., Teixeira, M. B., SoareS, F. A. L. (2022). Phytochemical and physicochemical evaluation, and photoprotection, antioxidant, antifungal, and antibacterial activities of the floral extract of Schubertia grandiflora Mart. & Zucc. (Apocynaceae). Brazilian Journal of Science, 1(1), 8-22.

Nogueira, G. F., Fakhouri, F. M., Oliveira, R. A. (2018). Extration and characterization of arrowroot (Maranta arundinacea) L. starch and its application in edible films. Carbohydrate Polymers, 186, 64-72. https://doi.org/10.1016/j.carbpol.2018.01.024 DOI: https://doi.org/10.1016/j.carbpol.2018.01.024

Norajit, K., Kim, K. M., Ryu, G. H. (2010). Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. Journal of Food Engineering, 98, 377-384. https://doi.org/10.1016/j.jfoodeng.2010.01.015 DOI: https://doi.org/10.1016/j.jfoodeng.2010.01.015

Nor Adilah, A., Jamilah, B., Noranizan, M. A., Nur Hanani, Z.A. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1-7. https://doi.org/10.1016/j.fpsl.2018.01.006 DOI: https://doi.org/10.1016/j.fpsl.2018.01.006

PiñeroS-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488-495. http://dx.doi.org/10.1016/j.foodhyd.2016.09.034 DOI: https://doi.org/10.1016/j.foodhyd.2016.09.034

Rambabu, K., Bharath, G., Banat, F., Show, P. L., Cocoletzi, H. H. (2019). Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126, 1234-1243. http://dx.doi.org/10.1016/j.ijbiomac.2018.12.196 DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.196

Shen, Z., Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. https://doi.org/10.1016/j.ijbiomac.2014.11.046 DOI: https://doi.org/10.1016/j.ijbiomac.2014.11.046

Shen, X. L., Wu, J. M., Chen, Y., Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285-290. https://doi.org/10.1016/j.foodhyd.2009.10.003 DOI: https://doi.org/10.1016/j.foodhyd.2009.10.003

Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079-1089. http://dx.doi.org/10.1016/j.ijbiomac.2019.03.190 DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.190

Valadares, A. C. F, Fernandes, C. C., Oliveira Filho, J. G., Deus, I. P. B., Lima, T. M., Silva, E. A. J., Souchie, E. L., Miranda, M. L. D. (2020). Incorporation of essential oils from Piper aduncum into films made from arrowroot starch: effect on their physicochemical properties and antifungal activity. Química Nova, 43(6), 729-737. http://dx.doi.org/10.21577/0100-4042.20170530 DOI: https://doi.org/10.21577/0100-4042.20170530

Xu, Y. X., Kim, K. M., Hanna, M. A., Nag, D. (2005). Chitosan-starch composite film: Preparation and characterization. Industrial Crops and Products, 21(2), 185-192. https://doi.org/10.1016/j.indcrop.2004.03.002 DOI: https://doi.org/10.1016/j.indcrop.2004.03.002

Youseef, H. F., El-Naggar, M. E., Fouda, F. K., Youseef, A. M. (2019). Antimicrobial packaging film based on biodegradable CMC/PVA-zeolite doped with noble metal cations. Food Packaging and Shelf Life, 22. DOI: https://doi.org/10.1016/j.fpsl.2019.100378

Downloads

Published

2022-02-01

How to Cite

Menezes Filho, A. C. P. de, Ventura, M. V. A., Batista-Ventura, H. R. F., Castro, C. F. de S., Teixeira, M. B., Taques, A. S., Alves, I., & Soares, F. A. L. (2022). Biodegradable films of arrowroot starch (Maranta arundinacea) incorporated with floral extract of Tabebuia impetiginosa and copper sulfate: physical and physicochemical properties, and biodegradability and antibacterial activities. Brazilian Journal of Science, 1(2), 46–58. https://doi.org/10.14295/bjs.v1i2.112

Issue

Section

Agrarian and Biological Sciences