From immutable identity to plastic architecture: Topological turning points in the human brain across the lifespan
DOI:
https://doi.org/10.14295/bjs.v5i2.833Keywords:
connectome fingerprints, topological turning points, brain network aging, predictive modeling, cognitive reserveAbstract
Brain network topology evolves nonlinearly across the lifespan, with turning points marking inflections in metrics like global efficiency and modularity, while connectome fingerprints capture individual stability. These features, when integrated, hold untapped potential for predicting cognitive and mental health trajectories, yet their interactive prognostic value remains underexplored amid rising neurodegenerative burdens. This study aimed to delineate individual variability in topological turning points and fingerprint stability, and then harness their synergies to forecast longitudinal outcomes, advancing precision neuroimaging for aging. In a cohort of 736 participants (ages 6–94), we identified four turning points via generalized additive models on diffusion MRI-derived networks. Fingerprint stability was quantified via intra-individual correlations (N = 150 longitudinal subsample). Predictive linear models (N = 150, 20-year follow-ups) integrated baseline fingerprints, turning point interactions, and genetic/environmental covariates to prognose cognitive/mental health declines. Turning points exhibited bimodal age distributions (e.g., global efficiency rank 1: 29.6 ± 18.7 years) with decreasing magnitudes and genetic-null correlations (r ≈ 0). Fingerprints showed high stability (0.907 ± 0.043), decaying across epochs (p = 0.002), and were heritably anchored (r = 0.809). Models achieved R² = 0.746 (cognitive) and 0.706 (mental health), driven by reserve × turning point interactions (β = -0.0055), stratifying high-risk accelerations (d = 0.115). We pioneer hybrid fingerprint-turning point frameworks, revealing epochal reconfiguration hotspots and archetype-based risk profiles, extending static Connectomics to dynamic, individualized chronometers. Topological turning points and fingerprints synergize as biographical scaffolds of brain health, demystifying heterogeneous aging. Deploy fingerprint-tailored screenings at turning point thresholds to preempt declines via targeted interventions.
References
Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143(3), 233-262. https://doi.org/10.1037/bul0000099
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336-349. https://doi.org/10.1038/nrn3214
Calhoun, V. D., Miller, R., Pearlson, G., & Adali, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(3), 262-274. https://doi.org/10.1016/j.neuron.2014.10.015
Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernández, M. C. V., Maniega, S. M., Royle, N., & UK Biobank Aging Group. (2018). Brain age predicts mortality. Molecular Psychiatry, 23(5), 1385-1392. https://doi.org/10.1038/mp.2017.112
Dennis, E. L., Rashid, F., Faskowitz, J., Liu, K., Farzam, A., Gutman, B. A., & Thompson, P. M. (2019). MAPPING: Characterizing the phenotypic impact of neuroanatomical genetic liability. Biological Psychiatry, 86(10), 751-762. https://doi.org/10.1016/j.biopsych.2019.06.031
Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111-116. https://doi.org/10.1038/s41592-018-0235-4
Ewers, M., Insel, P. S., Stern, Y., & Weiner, M. W. (2021). Cognitive decline in the absence of tau pathology: Insights from the BIOCARD study. Alzheimer's & Dementia, 17(5), 791-800. https://doi.org/10.1002/alz.12234
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., & Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664-1671. https://doi.org/10.1038/nn.4135
Goshu, B. S. (2025a). A fingerprint matrix methodology for the predictive diagnosis of incipient wall failure: A mathematical modeling and machine learning approach. International Journal of Building Information Modeling Applications in Construction 1(2), 25-45.
Goshu B. S. (2025b), Entropic lifespan: Disorder and transformation in human life from birth to death. Brazilian Journal of Science, 4(12), 14-27.
Gratton, C., Nomura, E. M., Pérez, F., & D'Esposito, M. (2012). Focal brain hyperconnectivity in frontoparietal cortex underlies task-unrelated thought. Nature Neuroscience, 15(10), 1406-1410. https://doi.org/10.1038/nn.3211
Horvath, S., Raj, K., & Zhang, B. (2018). Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging, 10(6), 1379-1391. https://doi.org/10.18632/aging.101509
Jack, C. R., Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., & Silverberg, N. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535-562. https://doi.org/10.1016/j.jalz.2018.02.018
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: Meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72(6), 603-611. https://doi.org/10.1001/jamapsychiatry.2015.0071
Kong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., Zuo, X.-N., Spreng, N., Ge, T., Holmes, A., Eickhoff, S., & Yeo, B. T. T. (2021). Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cerebral Cortex, 31(10), 4477–4500. https://doi.org/10.1093/cercor/bhab101
Li, J., Bzdok, D., Chen, J., Tam, A., Ooi, L. Q., Holmes, A. J., Ge, T., Patil, K. R., & Yeo, B. T. T. (2022). Cortical similarity and its relationship with clinical changes in Alzheimer’s disease. Brain Communications, 4(3), fcac122. https://doi.org/10.1093/braincomms/fcac122
Li, X., Marshall, G., Nation, D. A., & Pase, M. P. (2023). Genetic risk for Alzheimer's disease and longitudinal brain structural changes. NeuroImage: Clinical, 38, 103412. https://doi.org/10.1016/j.nicl.2023.103412
McEwen, B. S. (2017). Neurobiological and systemic effects of chronic stress. Chronic Stress, 1. https://doi.org/10.1177/2470547017692328
Meunier, D., Lambiotte, R., & Bullmore, E. T. (2009). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200. https://doi.org/10.3389/fnins.2010.00200
Mousley, A., Bethlehem, R. A. I., Yeh, F.-C., & Astle, D. E. (2025). Topological turning points across the human lifespan. Nature Communications, 16. https://doi.org/10.1038/s41467-025-65974-8
Noble, S., Scheinost, D., & Constable, R. T. (2021). A decade of test-retest reliability of resting-state fMRI: A systematic review. NeuroImage, 221, 117214. https://doi.org/10.1016/j.neuroimage.2020.117214
Preti, M. G., Bolton, T. A., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160, 41-54. https://doi.org/10.1016/j.neuroimage.2017.06.011
Rebok, G. W., Ball, K. K., Edwards, J. D., Williford, J. S., & Voss, M. W. (2014). The active cognitive training interventions to improve cognition and function in older adults: A randomized trial. JAMA, 312(1), 57-67. https://doi.org/10.1001/jama.2014.7490
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Salthouse, T. A. (2011). Empirical analyses of the appropriate age range for the Seattle Longitudinal Study. Journal of Gerontology: Psychological Sciences, 66B(5), 593-598. https://doi.org/10.1093/geronb/gbr068
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., & Posthuma, D. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50(7), 912-919. https://doi.org/10.1038/s41588-018-0152-6
Sperling, R. A., Mormino, E. C., & Johnson, K. A. (2014). The evolution of preclinical Alzheimer's disease: Implications for prevention trials. Neuron, 84(3), 608-622. https://doi.org/10.1016/j.neuron.2014.10.045
Sporns, O. (2018). Graph theory methods: Applications in brain networks. Dialogues in Clinical Neuroscience, 20(2), 111-121. https://doi.org/10.31887/DCNS.2018.20.2/osporns
Stein, J. L., Parikshak, N. N., & Geschwind, D. H. (2012). Rare inherited variation in autism: Beginning to see the forest through the trees. Autism Research, 5(1), 1-2. https://doi.org/10.1002/aur.1221
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015-2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11(11), 1006-1012. https://doi.org/10.1016/S1474-4422(12)70191-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Belay Sitotaw Goshu

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.

