From immutable identity to plastic architecture: Topological turning points in the human brain across the lifespan

Authors

DOI:

https://doi.org/10.14295/bjs.v5i2.833

Keywords:

connectome fingerprints, topological turning points, brain network aging, predictive modeling, cognitive reserve

Abstract

Brain network topology evolves nonlinearly across the lifespan, with turning points marking inflections in metrics like global efficiency and modularity, while connectome fingerprints capture individual stability. These features, when integrated, hold untapped potential for predicting cognitive and mental health trajectories, yet their interactive prognostic value remains underexplored amid rising neurodegenerative burdens. This study aimed to delineate individual variability in topological turning points and fingerprint stability, and then harness their synergies to forecast longitudinal outcomes, advancing precision neuroimaging for aging. In a cohort of 736 participants (ages 6–94), we identified four turning points via generalized additive models on diffusion MRI-derived networks. Fingerprint stability was quantified via intra-individual correlations (N = 150 longitudinal subsample). Predictive linear models (N = 150, 20-year follow-ups) integrated baseline fingerprints, turning point interactions, and genetic/environmental covariates to prognose cognitive/mental health declines. Turning points exhibited bimodal age distributions (e.g., global efficiency rank 1: 29.6 ± 18.7 years) with decreasing magnitudes and genetic-null correlations (r ≈ 0). Fingerprints showed high stability (0.907 ± 0.043), decaying across epochs (p = 0.002), and were heritably anchored (r = 0.809). Models achieved R² = 0.746 (cognitive) and 0.706 (mental health), driven by reserve × turning point interactions (β = -0.0055), stratifying high-risk accelerations (d = 0.115). We pioneer hybrid fingerprint-turning point frameworks, revealing epochal reconfiguration hotspots and archetype-based risk profiles, extending static Connectomics to dynamic, individualized chronometers. Topological turning points and fingerprints synergize as biographical scaffolds of brain health, demystifying heterogeneous aging. Deploy fingerprint-tailored screenings at turning point thresholds to preempt declines via targeted interventions.

References

Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143(3), 233-262. https://doi.org/10.1037/bul0000099

Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336-349. https://doi.org/10.1038/nrn3214

Calhoun, V. D., Miller, R., Pearlson, G., & Adali, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(3), 262-274. https://doi.org/10.1016/j.neuron.2014.10.015

Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernández, M. C. V., Maniega, S. M., Royle, N., & UK Biobank Aging Group. (2018). Brain age predicts mortality. Molecular Psychiatry, 23(5), 1385-1392. https://doi.org/10.1038/mp.2017.112

Dennis, E. L., Rashid, F., Faskowitz, J., Liu, K., Farzam, A., Gutman, B. A., & Thompson, P. M. (2019). MAPPING: Characterizing the phenotypic impact of neuroanatomical genetic liability. Biological Psychiatry, 86(10), 751-762. https://doi.org/10.1016/j.biopsych.2019.06.031

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111-116. https://doi.org/10.1038/s41592-018-0235-4

Ewers, M., Insel, P. S., Stern, Y., & Weiner, M. W. (2021). Cognitive decline in the absence of tau pathology: Insights from the BIOCARD study. Alzheimer's & Dementia, 17(5), 791-800. https://doi.org/10.1002/alz.12234

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., & Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664-1671. https://doi.org/10.1038/nn.4135

Goshu, B. S. (2025a). A fingerprint matrix methodology for the predictive diagnosis of incipient wall failure: A mathematical modeling and machine learning approach. International Journal of Building Information Modeling Applications in Construction 1(2), 25-45.

Goshu B. S. (2025b), Entropic lifespan: Disorder and transformation in human life from birth to death. Brazilian Journal of Science, 4(12), 14-27.

Gratton, C., Nomura, E. M., Pérez, F., & D'Esposito, M. (2012). Focal brain hyperconnectivity in frontoparietal cortex underlies task-unrelated thought. Nature Neuroscience, 15(10), 1406-1410. https://doi.org/10.1038/nn.3211

Horvath, S., Raj, K., & Zhang, B. (2018). Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging, 10(6), 1379-1391. https://doi.org/10.18632/aging.101509

Jack, C. R., Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., & Silverberg, N. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535-562. https://doi.org/10.1016/j.jalz.2018.02.018

Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: Meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72(6), 603-611. https://doi.org/10.1001/jamapsychiatry.2015.0071

Kong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., Zuo, X.-N., Spreng, N., Ge, T., Holmes, A., Eickhoff, S., & Yeo, B. T. T. (2021). Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cerebral Cortex, 31(10), 4477–4500. https://doi.org/10.1093/cercor/bhab101

Li, J., Bzdok, D., Chen, J., Tam, A., Ooi, L. Q., Holmes, A. J., Ge, T., Patil, K. R., & Yeo, B. T. T. (2022). Cortical similarity and its relationship with clinical changes in Alzheimer’s disease. Brain Communications, 4(3), fcac122. https://doi.org/10.1093/braincomms/fcac122

Li, X., Marshall, G., Nation, D. A., & Pase, M. P. (2023). Genetic risk for Alzheimer's disease and longitudinal brain structural changes. NeuroImage: Clinical, 38, 103412. https://doi.org/10.1016/j.nicl.2023.103412

McEwen, B. S. (2017). Neurobiological and systemic effects of chronic stress. Chronic Stress, 1. https://doi.org/10.1177/2470547017692328

Meunier, D., Lambiotte, R., & Bullmore, E. T. (2009). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200. https://doi.org/10.3389/fnins.2010.00200

Mousley, A., Bethlehem, R. A. I., Yeh, F.-C., & Astle, D. E. (2025). Topological turning points across the human lifespan. Nature Communications, 16. https://doi.org/10.1038/s41467-025-65974-8

Noble, S., Scheinost, D., & Constable, R. T. (2021). A decade of test-retest reliability of resting-state fMRI: A systematic review. NeuroImage, 221, 117214. https://doi.org/10.1016/j.neuroimage.2020.117214

Preti, M. G., Bolton, T. A., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160, 41-54. https://doi.org/10.1016/j.neuroimage.2017.06.011

Rebok, G. W., Ball, K. K., Edwards, J. D., Williford, J. S., & Voss, M. W. (2014). The active cognitive training interventions to improve cognition and function in older adults: A randomized trial. JAMA, 312(1), 57-67. https://doi.org/10.1001/jama.2014.7490

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

Salthouse, T. A. (2011). Empirical analyses of the appropriate age range for the Seattle Longitudinal Study. Journal of Gerontology: Psychological Sciences, 66B(5), 593-598. https://doi.org/10.1093/geronb/gbr068

Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., & Posthuma, D. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50(7), 912-919. https://doi.org/10.1038/s41588-018-0152-6

Sperling, R. A., Mormino, E. C., & Johnson, K. A. (2014). The evolution of preclinical Alzheimer's disease: Implications for prevention trials. Neuron, 84(3), 608-622. https://doi.org/10.1016/j.neuron.2014.10.045

Sporns, O. (2018). Graph theory methods: Applications in brain networks. Dialogues in Clinical Neuroscience, 20(2), 111-121. https://doi.org/10.31887/DCNS.2018.20.2/osporns

Stein, J. L., Parikshak, N. N., & Geschwind, D. H. (2012). Rare inherited variation in autism: Beginning to see the forest through the trees. Autism Research, 5(1), 1-2. https://doi.org/10.1002/aur.1221

Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015-2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004

Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11(11), 1006-1012. https://doi.org/10.1016/S1474-4422(12)70191-6

Downloads

Published

2026-01-09

How to Cite

Goshu, B. S. (2026). From immutable identity to plastic architecture: Topological turning points in the human brain across the lifespan. Brazilian Journal of Science, 5(2), 28–46. https://doi.org/10.14295/bjs.v5i2.833