Effect of enzymes by substitution of corn with wheat on growth performance and digestibility of broilers

Authors

  • Khuram Javed University of Agriculture Faisalabad, Pakistan
  • Muhammad Salman University of Agriculture Faisalabad, Pakistan https://orcid.org/0000-0002-4776-4513
  • Muhammad Sharif University of Agriculture Faisalabad, Pakistan
  • Hussain Muneer University of Agriculture Faisalabad, Pakistan
  • Talha Najam University of Agriculture Faisalabad, Pakistan
  • Umair Iqbal Livestock and Dairy Development Department, Punjab, Pakistan

DOI:

https://doi.org/10.14295/bjs.v1i5.83

Keywords:

Corn substitution, Enzyme, Growth, Digestibility, Broilers

Abstract

Substitution of corn with wheat associated with its variable energy content and detrimental effect on broiler performance. In a case of high-cost yellow corn, several feed producers are choosing to replace yellow corn with other ingredients like wheat, barley or sorghum. The predominant Non Starch Polysaccharides (NSP) in wheat are the pentosans (arabinixylans).  Nonstarch polysaccharides create a viscous environment in the gastrointestinal tract of broiler chickens thereby interfering with the digestion and absorption of nutrients. Broilers lack endogenous enzymes to degrade arbino-xylans of wheat. Supplementation of exogenous feed grade enzymes to the cereal based diets improve the performance of broilers. Enzyme supplementation of chicken cereals based diets has resulted in improved starch and nitrogen digestibility as well as improved absorption of starch, amino acids and lipids. Supplemental enzymes such as β-glucanase, xylanase, protease and amylase break the polymeric chains of NSP into smaller pieces, thereby improving their nutritional value. The study concluded that the supplementation of NSP-degrading enzymes in wheat-based diet improve growth performance, ileal viscosity and gastric passage rate in broiler chickens.

References

Acamovic, T. (2001). Commercial application of enzyme technology for poultry production. World's Poultry Science Journal, 57(3), 225-242. https://doi.org/10.1079/WPS20010016 DOI: https://doi.org/10.1079/WPS20010016

Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. Elsevier applied science publishers.

Amirkolaie, A. K., Verreth, J. A., & Schrama, J. W. (2006). Effect of gelatinization degree and inclusion level of dietary starch on the characteristics of digesta and faeces in Nile tilapia (Oreochromis niloticus (L.)). Aquaculture, 260(1-4), 194-205. https://doi.org/10.1016/j.aquaculture.2006.06.039 DOI: https://doi.org/10.1016/j.aquaculture.2006.06.039

Al-Dawood, A. (2016). Applications of acute phase proteins as biomarkers in poultry. Bull. Fac. Agric. Cairo Univ, 67, 193-212. DOI: https://doi.org/10.21608/ejarc.2016.212974

Boros, D., & Fraś, A. (2015). Monographs and dissertations 49/2015. Plant Breeding and Acclimatization Institute-National Research Institute. Radzików.

Knudsen, K. E. B. (2014). Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poultry science, 93(9), 2380-2393. https://doi.org/10.3382/ps.2014-03902 DOI: https://doi.org/10.3382/ps.2014-03902

Bach, K. K. (2001). The nutritional significance of' dietary fibre analysis. Animal Feed Science and Technology, 90(1-2), 3-20. DOI: https://doi.org/10.1016/S0377-8401(01)00193-6

Basmacioğlu Malayoğlu, H., Baysal, Ş. E. N. A. Y., Misirlioğlu, Z., Polat, M. E. L. T. E. M., Yilmaz, H., & Turan, N. (2010). Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal diets. British Poultry

Science, 51(1), 67-80. https://doi.org/10.1080/00071660903573702 DOI: https://doi.org/10.1080/00071660903573702

Chiang, C. C., Yu, B., & Chiou, P. W. S. (2005). Effects of xylanase supplementation to wheat-based diet on the performance and nutrient availability of broiler chickens. Asian-australasian journal of animal sciences, 18(8), 1141-1146. https://doi.org/10.5713/ajas.2005.1141 DOI: https://doi.org/10.5713/ajas.2005.1141

Choct, M., Hughes, R. J., & Bedford, M. R. (1999). Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. British Poultry Science, 40(3), 419-422. https://doi.org/10.1080/00071669987548 DOI: https://doi.org/10.1080/00071669987548

Chunxi, L., Zongbo, Q., Lina, J., & Xia, Z. (2002). Research on the Content of Pentosan in Wheat Grain. Journal of Triticeae Crops, 22(1), 47-50.

Cowieson, A. J., & Ravindran, V. (2008). Effect of exogenous enzymes in maize-based diets varying in nutrient density for young broilers: growth performance and digestibility of energy, minerals and amino acids. British poultry science, 49(1), 37-44. https://doi.org/10.1080/00071660701812989 DOI: https://doi.org/10.1080/00071660701812989

Cowieson, A. J., & Roos, F. F. (2016). Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Animal Feed Science and Technology, 221, 331-340. https://doi.org/10.1016/j.anifeedsci.2016.04.015 DOI: https://doi.org/10.1016/j.anifeedsci.2016.04.015

Del Alamo, A. G., Verstegen, M. W. A., Den Hartog, L. A., De Ayala, P. P., & Villamide, M. J. (2008). Effect of wheat cultivar and enzyme addition to broiler chicken diets on nutrient digestibility, performance, and apparent metabolizable energy content. Poultry science, 87(4), 759-767. https://doi.org/10.3382/ps.2007-00437 DOI: https://doi.org/10.3382/ps.2007-00437

Erdaw, M. M., Bhuiyan, M. M., & Iji, P. A. (2016). Enhancing the nutritional value of soybeans for poultry through supplementation with new-generation feed enzymes. World's Poultry Science Journal, 72(2), 307-322. https://doi.org/10.1017/S0043933916000271 DOI: https://doi.org/10.1017/S0043933916000271

Feedipedia 2013: Animal Feed Resources Information System. http:/www.feedipedia. org.com.

Gatrell, S., Lum, K., Kim, J., & Lei, X. G. (2014). Nonruminant Nutrition Symposium: Potential of defatted microalgae from the biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. Journal of animal science, 92(4), 1306-1314. https://doi.org/10.2527/jas.2013-7250 DOI: https://doi.org/10.2527/jas.2013-7250

Gonzàlez‐Tello, P., Camacho, F., Jurado, E., Paez, M. P., & Guadix, E. M. (1994). Enzymatic hydrolysis of whey proteins: I. Kinetic models. Biotechnology and bioengineering, 44(4), 523-528. https://doi.org/10.1002/bit.260440415 DOI: https://doi.org/10.1002/bit.260440415

Hadorn, R., Wiedmer, H., & Broz, J. (2001). Effect of an enzyme complex in a wheat-based diet on performance of male and female broilers. Journal of Applied Poultry Research, 10(4), 340-346. https://doi.org/10.1093/japr/10.4.340 DOI: https://doi.org/10.1093/japr/10.4.340

Henry, R. J. (1985). A comparison of the non‐starch carbohydrates in cereal grains. Journal of the Science of Food and Agriculture, 36(12), 1243-1253. https://doi.org/10.1002/jsfa.2740361207 DOI: https://doi.org/10.1002/jsfa.2740361207

Hetland, H., Svihus, B., & Olaisen, V. (2002). Effect of feeding whole cereals on performance, starch digestibility and duodenal particle size distribution in broiler chickens. British poultry science, 43(3), 416-423. https://doi.org/10.1080/00071660120103693 DOI: https://doi.org/10.1080/00071660120103693

Hetland, H., Choct, M., & Svihus, B. (2004). Role of insoluble non-starch polysaccharides in poultry nutrition. World's Poultry Science Journal, 60(4), 415-422. https://doi.org/10.1079/WPS200325 DOI: https://doi.org/10.1079/WPS200325

Husna, A., Badruzzaman, A. T. M., Runa, N. Y., Yesmin, S., Runa, N. S., Rahman, M. A., & Mia, M. M. (2017). Evaluation of productive performance of selected broiler strains under field condition at Sylhet district of Bangladesh. Ann. Vet. Anim. Sci, 4, 104-109.

Hossain, M. A., Focken, U., & Becker, K. (2001). Galactomannan-rich endosperm of Sesbania (Sesbania aculeata) seeds responsible for retardation of growth and feed utilisation in common carp, Cyprinus carpio L. Aquaculture, 203(1-2), 121-132. https://doi.org/10.1016/S0044-8486(01)00617-2 DOI: https://doi.org/10.1016/S0044-8486(01)00617-2

Iji, P. A., Saki, A. A., & Tivey, D. R. (2001). Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Animal Feed Science and Technology, 89(3-4), 175-188.https://doi.org/10.1016/S0377-8401(00)00223-6 DOI: https://doi.org/10.1016/S0377-8401(00)00223-6

Jamili, F., Golian, A., & Zarghi, H. Effect of different levels of wheat inulinand enzyme complex on performance, intestinal microfloraand jejuna histomorphologyin broiler chickens.

Jürgens, H. U., Jansen, G., & Wegener, C. B. (2012). Characterisation of several rye cultivars with respect to arabinoxylans and extract viscosity. Journal of agricultural science, 4(5), 1.http://dx.doi.org/10.5539/jas.v4n5p1 DOI: https://doi.org/10.5539/jas.v4n5p1

Kalmendal, R., & Tauson, R. (2012). Effects of a xylanase and protease, individually or in combination, and an ionophore coccidiostat on performance, nutrient utilization, and intestinal morphology in broiler chickens fed a wheat-soybean meal-based diet. Poultry Science, 91(6), 1387-1393.https://doi.org/10.3382/ps.2011-02064 DOI: https://doi.org/10.3382/ps.2011-02064

Kiarie, E., Romero, L. F., & Ravindran, V. (2014). Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poultry Science, 93(5), 1186-1196.https://doi.org/10.3382/ps.2013-03715 DOI: https://doi.org/10.3382/ps.2013-03715

Kong, X., Zhou, H., & Qian, H. (2007). Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chemistry, 102(3), 759-763.https://doi.org/10.1016/j.foodchem.2006.06.062 DOI: https://doi.org/10.1016/j.foodchem.2006.06.062

Lei, Z., Shao, Y., Yin, X., Yin, D., Guo, Y., & Yuan, J. (2016). Combination of xylanase and debranching enzymes specific to wheat arabinoxylan improve the growth performance and gut health of broilers. Journal of agricultural and food chemistry, 64(24), 4932-4942. https://doi.org/10.1021/acs.jafc.6b01272 DOI: https://doi.org/10.1021/acs.jafc.6b01272

Leenhouwers, J. I., Ortega, R. C., Verreth, J. A., & Schrama, J. W. (2007). Digesta characteristics in relation to nutrient digestibility and mineral absorption in Nile tilapia (Oreochromis niloticus L.) fed cereal grains of increasing viscosity.

Aquaculture, 273(4), 556-565. https://doi.org/10.1016/j.aquaculture.2007.10.044 DOI: https://doi.org/10.1016/j.aquaculture.2007.10.044

Leenhouwers, J. I., ter Veld, M., Verreth, J. A., & Schrama, J. W. (2007). Digesta characteristiscs and performance of African catfish (Clarias gariepinus) fed cereal grains that differ in viscosity. Aquaculture, 264(1-4), 330-341. https://doi.org/10.1016/j.aquaculture.2007.01.003 DOI: https://doi.org/10.1016/j.aquaculture.2007.01.003

Liu, W. C., & Kim, I. H. (2017). Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets. Poultry Science, 96(3), 566-573. https://doi.org/10.3382/ps/pew258 DOI: https://doi.org/10.3382/ps/pew258

Meng, X. (2005). Improved nutrient utilization and growth performance of broiler chickens fed diets supplemented with multicarbohydrase enzyme preparations.

Mirzaie, S., Zaghari, M., Aminzadeh, S., Shivazad, M., & Mateos, G. G. (2012). Effects of wheat inclusion and xylanase supplementation of the diet on productive performance, nutrient retention, and endogenous intestinal enzyme activity of laying hens. Poultry Science, 91(2), 413-425. https://doi.org/10.3382/ps.2011-01686 DOI: https://doi.org/10.3382/ps.2011-01686

Mohamed I, E. K., Mosaad A, S., Hany F, E. K., & El Sayed R, K. (2014). Growth performance, blood parameters, immune response and carcass traits of broiler chicks fed on graded levels of wheat instead of corn without or with enzyme supplementation.

Moss, A. F., Khoddami, A., Chrystal, P. V., Sorbara, J. O. B., Cowieson, A. J., Selle, P. H., & Liu, S. Y. (2020). Starch digestibility and energy utilisation of maize-and wheat-based diets is superior to sorghum-based diets in broiler chickens offered diets supplemented with phytase and xylanase. Animal Feed Science and Technology, 264, 114475.

https://doi.org/10.1016/j.anifeedsci.2020.114475 DOI: https://doi.org/10.1016/j.anifeedsci.2020.114475

Munyaka, P. M., Nandha, N. K., Kiarie, E., Nyachoti, C. M., & Khafipour, E. (2016). Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poultry Science, 95(3), 528-540. https://doi.org/10.3382/ps/pev333 DOI: https://doi.org/10.3382/ps/pev333

Nahas, J., & Lefrancois, M. R. (2001). Effects of feeding locally grown whole barley with or without enzyme addition and whole wheat on broiler performance and carcass traits. Poultry Science, 80(2), 195-202. https://doi.org/10.1093/ps/80.2.195 DOI: https://doi.org/10.1093/ps/80.2.195

Ohimain, E. I., & Ofongo, R. T. (2013). Effect of enzyme supplemented diet on gut microflora, digesta ph and performance of Broiler chickens. The Journal of Microbiology, Biotechnology and Food Sciences, 3(2), 127.

Perini, F., Cendron, F., Rovelli, G., Castellini, C., Cassandro, M., & Lasagna, E. (2021). Emerging genetic tools to investigate molecular pathways related to heat stress in chickens: A review. Animals, 11(1), 46. https://doi.org/10.3390/ani11010046 DOI: https://doi.org/10.3390/ani11010046

Pluske, J. R., Pethick, D. W., Hopwood, D. E., & Hampson, D. J. (2002). Nutritional influences on some major enteric bacterial diseases of pig. Nutrition research reviews, 15(2), 333-371. https://doi.org/10.1079/NRR200242 DOI: https://doi.org/10.1079/NRR200242

Preston, C. M., McCracken, K. J., & McAllister, A. (2000). Effect of diet form and enzyme supplementation on growth, efficiency and energy utilisation of wheat-based diets for broilers. British Poultry Science, 41(3), 324-331. https://doi.org/10.1080/713654933 DOI: https://doi.org/10.1080/713654933

Razuki, W. M., Al-Khailani, F. M., & Farhan, S. H. (2017). Effect of feedingcorn-or wheat-based diets supplemented with enzyme and/or probiotic on productive performance of sexed broiler chickens. Iraqi J. Agric.

Romero, L. F., Parsons, C. M., Utterback, P. L., Plumstead, P. W., & Ravindran, V. (2013). Comparative effects of dietary carbohydrases without or with protease on the ileal digestibility of energy and amino acids and AMEn in young broilers. Animal feed science and technology, 181(1-4), 35-44. https://doi.org/10.1016/j.anifeedsci.2013.02.001 DOI: https://doi.org/10.1016/j.anifeedsci.2013.02.001

Selle, P. H., Ravindran, V., Ravindran, G., Pittolo, P. H., & Bryden, W. L. (2003). Influence of phytase and xylanase supplementation on growth performance and nutrient utilisation of broilers offered wheat-based diets. Asian-Australasian Journal of Animal Sciences, 16(3), 394-402. https://doi.org/10.5713/ajas.2003.394 DOI: https://doi.org/10.5713/ajas.2003.394

Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of experimental botany, 53(370), 947-958. https://doi.org/10.1093/jexbot/53.370.947 DOI: https://doi.org/10.1093/jexbot/53.370.947

Singh, A. K., Berrocoso, J. D., Dersjant-Li, Y., Awati, A., & Jha, R. (2017). Effect of a combination of xylanase, amylase and protease on growth performance of broilers fed low and high fiber diets. Animal Feed Science and Technology, 232, 16-20. https://doi.org/10.1016/j.anifeedsci.2017.07.012 DOI: https://doi.org/10.1016/j.anifeedsci.2017.07.012

Singh, Y., Molan, A. L., & Ravindran, V. (2019). Influence of the method of whole wheat inclusion on performance and caecal microbiota profile of broiler chickens. Journal of Applied Animal Nutrition, 7. https://doi.org/10.1017/jan.2019.3 DOI: https://doi.org/10.1017/jan.2019.3

Svihus, B., & Hetland, H. (2001). Ileal starch digestibility in growing broiler chickens fed on a wheat-based diet is improved by mash feeding, dilution with cellulose or whole wheat inclusion. British poultry science, 42(5), 633-637. https://doi.org/10.1080/00071660120088461 DOI: https://doi.org/10.1080/00071660120088461

Wang, Z. R., Qiao, S. Y., Lu, W. Q., & Li, D. F. (2005). Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poultry Science, 84(6), 875-881. https://doi.org/10.1093/ps/84.6.875 DOI: https://doi.org/10.1093/ps/84.6.875

Wyatt, C. L., Parr, T., & Bedford, M. (2008, November). Mechanisms of action for supplemental NSP and phytase enzymes in poultry diets. In Carolina Poultry Nutrition Conference.

Yaghobfar, A., & Kalantar, M. (2017). Effect of non-starch polysaccharide (NSP) of wheat and barley supplemented with exogenous enzyme blend on growth performance, gut microbial, pancreatic enzyme activities, expression of glucose transporter (SGLT1) and mucin producer (MUC2) genes of broiler chickens. Brazilian Journal of Poultry

Science, 19, 629-638. https://doi.org/10.1590/1806-9061-2016-0441 DOI: https://doi.org/10.1590/1806-9061-2016-0441

Yang, Y., Iji, P. A., Kocher, A., Mikkelsen, L. L., & Choct, M. (2008). Effects of xylanase on growth and gut development of broiler chickens given a wheat-based diet. Asian-Australasian Journal of Animal Sciences, 21(11), 1659-1664. https://doi.org/10.5713/ajas.2008.80074 DOI: https://doi.org/10.5713/ajas.2008.80074

Yousif, S. I., Al-Hamdani, W. A., Mousa, B. H., & Al-Hamdani, A. A. Y. (2021, May). Effect Using Wheat Triticum aestivum and Corn Zea mays in Broiler Diets and Sex on Specific Characteristics. In IOP Conference Series: Earth and Environmental Science (Vol. 761, No. 1, p. 012126). IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/761/1/012126

Zarghi, H., & Golian, A. (2009). Effect of triticale replacement and enzyme supplementation on performance and blood chemistry of broiler chickens. J. Anim. Vet. Adv, 8(7), 1316-1321.

Zhang, L., Xu, J., Lei, L., Jiang, Y., Gao, F., & Zhou, G. H. (2014). Effects of xylanase supplementation on growth performance, nutrient digestibility and non-starch polysaccharide degradation in different sections of the gastrointestinal tract of broilers fed wheat-based diets. Asian-Australasian journal of animal sciences, 27(6), 855. DOI: https://doi.org/10.5713/ajas.2014.14006

https://dx.doi.org/10.5713%2Fajas.2014.14006

Downloads

Published

2022-05-01

How to Cite

Javed, K., Salman, M., Sharif, M., Muneer, H., Najam, T., & Iqbal, U. (2022). Effect of enzymes by substitution of corn with wheat on growth performance and digestibility of broilers. Brazilian Journal of Science, 1(5), 76–86. https://doi.org/10.14295/bjs.v1i5.83

Issue

Section

Agrarian and Biological Sciences