Exploring the therapeutic potential of edible mushrooms: antioxidant and anti-inflammatory properties of Agaricus bisporus and Pleurotus ostreatus extracts

Authors

DOI:

https://doi.org/10.14295/bjs.v5i1.826

Keywords:

Agaricus genus, button mushroom, edible mushrooms, Pleurotus genus, protein extraction

Abstract

This study comparatively analyzed the protein profiles, antioxidant potential, and anti-inflammatory activities of Agaricus bisporus (button mushroom) and Pleurotus ostreatus (oyster mushroom). Proteins were extracted, purified via ammonium sulfate precipitation and dialysis, and quantified using the Lowry assay. SDS-PAGE analysis revealed distinct protein bands, particularly in the 11-17 kDa range, within fractions exhibiting the most promising bioactivities. Both mushroom species demonstrated significant total antioxidant capacity (TAC) via the phosphomolybdate assay, with notably high values observed in the P. ostreatus 30% (1.52 mg mL AAE-1), P. ostreatus 70% (0.85 mg mL AAE), and A. bisporus 70% (1.6 mg mL AAE-1) precipitation fractions, as well as crude extracts. For anti-inflammatory activity, evaluated by red blood cell (RBC) hemolysis inhibition, all extracts and fractions showed anti-hemolytic effects. The P. ostreatus 70% (72.15% inhibition), P. ostreatus 30% (69.62% inhibition), and A. bisporus 70% (68.35% inhibition) precipitation fractions displayed the highest efficacy. While oyster mushroom crude extract yielded a higher protein concentration (9.516 mg mL-1) than A. bisporus mushroom (6.516 mg mL-1), the study's focus remained on the functional activities of specific fractions. This research underscores the significant potential of both A. bisporus and P. ostreatus as natural sources of antioxidants and anti-inflammatory agents. The strong correlation between these high bioactivities and the presence of specific protein bands, particularly in the 11-17 kDa range within the most active fractions, emphasizes the crucial role of their protein components. Further investigation is warranted to isolate, characterize, and elucidate the mechanisms of action of these specific bioactive proteins for potential applications in functional foods, nutraceuticals, and pharmaceuticals.

References

Andrew, S. M., Titus, J. A., & Zumstein, L. (2001). Dialysis and concentration of protein solutions. Current Protocols in Toxicology, 10, A-3H. https://doi.org/10.1002/0471140856.txa03hs10

Araújo, P. L., Araújo, E. S., Barreto, E. M. A., Alves, J. L. B., Souza, K. M., Freire, M. P. L., & Souza, R. M. P. (2025). Pleurotus mushrooms in nutrition and health: Clinical and preclinical insights for nutraceutical development. Comprehensive Reviews in Food Science and Food Safety, 24(5), e70279. https://doi.org/10.1111/1541-4337.70279

Assemie, A., & Abaya, G. (2022). The effect of edible mushroom on health and their biochemistry. International Journal of Microbiology, 1. https://doi.org/10.1155/2022/8744788

Bai, Y., Liang, F., Yang, Y., Guan, L., & Ma, H. (2025). Polysaccharides from edible fungi spent mushroom substrates: A review of their extraction, purification, structural characteristics, and biological activities. International Journal of Biological Macromolecules, 330(1), 147925. https://doi.org/10.1016/j.ijbiomac.2025.147925

Cheung, P. C. K. (2008). Mushrooms as Functional Foods. Wiley, A John Wiley & Sons, INC., Publication, 227 p.

Deepalakshmi, K., & Sankaran, M. (2014). Pleurotus ostreatus: an oyster mushroom with nutritional and medicinal properties. Journal of Biochemical Technology, 5(2), 718-726.

El-Maradny, Y. A., Abouakkada, A. S., Abbass, A. A. G., Abaza, A. F., & El-Fakharany, E. M. (2025). Prebiotic properties and antioxidant effect of crude extracts and polysaccharides from Agaricus bisporus and Pleurotus ostreatus mushrooms. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-16152-9

Goyal, R. K., & Grewal, R. B. (2024). Effect of feeding Agaricus bisporus (white button) mushroom on serum and liver cholesterol and excretion of cholesterol and bile acids in rats. Journal of Scientific Research, 16(2), 579-587. https://doi.org/10.3329/jsr.v16i2.70098

Ionescu, M., Dincă, M-N., Ferdes, M., Zăbavă, B-Ș., Paraschiv, G., & Moiceanu, G. (2025). Proteins from edible mushrooms: Nutritional role and contribution to well-being. Foods, 14(18), 3201. https://doi.org/10.3390/foods14183201

Irfan, F. H., Shafiq, S. A., Afroz, S., Saleem, A., & Ammar, M. (2022). Medicinal importance of Pleurotus species (Oyster Mushroom): A review. Interdisciplinary Journal and Hummanity, 1(5), 29-34.

Jiang, N., Xu, S., & Li, C. (2025). Research progress on pharmacological activity of Agaricus bisporus: A review. Foods Bioscience, 73, 107763. https://doi.org/10.1016/j.fbio.2025.107763

Kumar, K., Mehra, R., Guiné, R. P. F., Lima, M. J., Kumar, N., Kaushik, R., Ahmed, N., Yadav, A. N., & Kumar, H. (2021). Edible mushrooms: A comprehensive review on bioactive compounds with health benefits and processing aspects. Foods, 10(12), 2996. https://doi.org/10.3390/foods10122996

Kumari, M., Poonia, M. K., & Pawariya, V. (2025). Button (Agaricus bisporus) and oyster mushrooms (Pleurotus ostreatus): Cultivation and its value addition: A overview. International Journal of Horticulture and Food Science, 7(5), 38-43. https://www.doi.org/10.33545/26631067.2025.v7.i5a.294

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0

Lindequist, U., Niedermeger, T. H. J., & Jülich, W-D. (2005). The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2, 285-299. https://doi.org/10.1093/ecam/neh107

Losoya-Sifuentes, C., Cruz, M., Rocha-Pizaña, M. del R., Loredo-Treviño, A., & Belmares, R. (2025). Edible mushrooms: a nutrient-rich ingredient for healthier food products – A review. Current Nutrition Reports, 14. https://doi.org/10.1007/s13668-024-00605-0

Ma, G., Li, X., Tao, Q., Ma, S., Du, H., Hu, Q., & Xiao, H. (2025). Impacts of preparation technologies on biological activities of edible mushroom polycaccharides – novel insights for personalized nutrition achievement. Critical Reviews in Food Science and Nutrition, 65(15), 2898-2920. https://doi.org/10.1080/10408398.2024.2352796

Masri, H. J., Maftoun, P., Malek, R. A., Boumehira, A. Z., Pareek, A., Hanapi, S. Z., Ling, O. M., & El Enshasy, H. A. (2017). The edible mushroom Pleurotus spp.: II. Medicinal Values. International Journal of Biotechnology for Wellness Industries 6(1), 1-11. https://doi.org/10.6000/1927-3037.2017.06.01.1

Mattila, P., Könkö, K., Eurola, M., Pihlava, J-M., Astola, J., Vahteristo, L., Hietaniemi, V., Kumpulainen, J., Valtonen, M., & Piironen, V. (2001). Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. Journal of Agricultural and Food Chemistry, 49(5), 2343-2348. https://doi.org/10.1021/jf001525d

Michalska, A., Sierocka, M., Drzewiecka, B., & Świeca, M. (2025). Antioxidant and anti-inflammatory properties of mushroom-based food additives and food fortified with them-current status and future perspectives. Antioxidants, 14(5), 519. https://doi.org/10.3390/antiox14050519

Patel, S., Dey, R., Verma, K., Deshbhratar, R., Maru, K. K., Sharma, P., Limaye, R., & Puri, P. (2023). Comparative analysis of antioxidant and anti-inflammatory activities of red, blue, and black tea for health benefits. Brazilian Journal of Science, 2(4), 76-89. https://doi.org/10.14295/bjs.v2i4.299

Patel, S., Sharma, P., Supat, M., Mali, S., Bafna, A., Rangwala, T., Limaye, R., & Puri, P. (2024). Investigation of antioxidant potential of black beans due to phytochemical and globulin content for nutraceutical application. Defence Life Science Journal, 9, 326-334.

Petrovska, B. B., Panov, S., Zafirovska, D. R., & Kulevanova, S. (2004). Electrophoretic study of mushroom proteins. Journal of Food Agriculture and Environment, 2, 148-152.

Rocha, E. M., Ávila, S., Lima, J. J., Silva, R. S. A., Mathias, Á. L., Bacila, D. M., & Jorge, R. M. M. (2025). Nutritional value and antioxidant activity of Agaricus bisporus, Lentinula edodes and Pleurotus ostreatus mushrooms. Anais da Academia Brasileira de Ciências, 97(4), e20241454. https://doi.org/10.1590/0001-3765202520241454

Santos-Buelga, M. T., Cruz, T., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemistry Toxicology, 46(8), 2742-2747. https://doi.org/10.1016/j.fct.2008.04.030

Singh, A., Saini, R. K., Kumar, A., Chawla, P., & Kaushik, R. (2025). Mushrooms as nutritional powerhouses: A review of their bioactive compounds, health benefits, and value-added products. Foods, 14(5), 741. https://doi.org/10.3390/foods14050741

Waktola, G, & Temesgen, T. (2020). Pharmacological activities of oyster mushroom (Pleurotus ostreatus). Novel Research in Microbiology Journal, 4, 688-695.

Wingfield, P. (1998). Protein precipitation using ammonium sulfate. Current Protocols in Protein Science, 13, A-3F. https://doi.org/10.1002/0471140864.psa03fs13

Zhang, S., Gantumur, M-A., He, Y., Bilawal, A., Jiang, Z., & Yang, Y. (2025). Characterization and comparison of chemical compositions and biological activities of an edible mushroom (Lactarius volemus) of three different sizes. Food Chemistry, 464(2), 141690. https://doi.org/10.1016/j.foodchem.2024.141690

Zhang, M., Zhao, L., Tang, F., Gao, J., & Qi, J. (2024). Chemical structures, biological activities, and biosynthetic analysis of secondary metabolites from Agaricus mushrooms: A review. Journal of Agricultural and Food Chemistry, 72(22), 12387-12397. https://doi.org/10.1021/acs.jafc.4c01861

Downloads

Published

2026-01-01

How to Cite

Shrivastava, P., Verma, A., Ali, N., Patel, S., Limaye, R., & Puri, P. (2026). Exploring the therapeutic potential of edible mushrooms: antioxidant and anti-inflammatory properties of Agaricus bisporus and Pleurotus ostreatus extracts. Brazilian Journal of Science, 5(1), 47–57. https://doi.org/10.14295/bjs.v5i1.826

Issue

Section

Agrarian and Biological Sciences