Adapted silver impregnation protocol for the detection of Merkel cells in fish skin embedded in plastic historesins

Authors

DOI:

https://doi.org/10.14295/bjs.v5i1.813

Keywords:

argyrophil silver impregnation, fish skin, histologic resin, light microscopy, Merkel cell

Abstract

Merkel cells are detected using silver impregnation in skin samples embedded in paraplast. Here, we describe an adapted protocol for detecting Merkel cells in Amur carp (Cyprinus rubrofuscus) skin samples embedded in historesin. Incubated slides in Grimelius silver impregnation solution at 60 ºC for five hours resulted in positive Merkel cells scattered among skin cell layers composed of Malpighian, goblet, and club cells. Thus, Merkel cells can be explored in samples embedded in historesins using adapted protocols for paraplast ones.

References

AVMA. (2013). American Veterinary Medical Association. AVMA guidelines for the euthanasia of animals: 2013 edition. Schaumburg, IL: American Veterinary Medical Association.

Bogutskaya, N. G., Naseka, A. M., Shedko, S. V., Vasileva, E. D., & Chereshnev, I. A. (2008). The fishes of the Amur River: updated check-list and zoogeography. Ichthyological Exploration of Freshwaters, 4, 301-366

Day, R., & Salzet, M. (2002). The neuroendocrine phenotype, cellular plasticity, and the search for genetic switches: redefining the diffuse neuroendocrine system. Neuro Endocrinology Letters, 23, 447-451

DeLellis, R. A. (2001). The neuroendocrine system and its tumors. American Journal of Clinical Pathology, 115, S5-S16. https://doi.org/10.1309/7GR5-L7YW-3G78-LDJ6

Grimelius, L. (2004). Silver stains demonstrating neuroendocrine cells. Biotechnic & Histochemistry, 79, 37-44. https://doi.org/10.1080/10520290410001715264

Grimelius, L. (2008). Methods in neuroendocrine histopathology, a methodological overview. Upsala Journal of Medical Sciences, 113, 243-260. https://doi.org/10.3109/2000-1967-238

Halata, Z., Grim, M., & Bauman, K. I. (2003). Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: review and new results. The Anatomical Record: Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 271, 225-239. https://doi.org/10.1002/ar.a.10029

Iger, Y., Lock, R. A. C., Jenner, H. A., & Wendelaar Bonga, S. E. (1994a). Cellular responses in the skin of carp (Cyprinus carpio) exposed to copper. Aquatic Toxicology, 29, 49-64. https://doi.org/10.1016/0166-445X(94)90047-7

Iger, Y., Lock, R. A. C., van der Meij, J. C. A., & Wendelaar Bonga, S. E. (1994b). Effects of Water-Borne Cadmium on the Skin of the Common Carp (Cyprinus carpio). Archives of Environmental Contamination and Toxicology, 26, 342-350. https://doi.org/10.1007/BF00203561

Iger, Y., Wendelaar Bonga, S. E. (1994). Cellular responses of the skin of carp (Cyprinus carpio) exposed to acidified water. Cell and Tissue Research, 275, 481-492. https://doi.org/10.1007/BF00318817

Kasumyan, A. O. (2011). Tactile reception and behavior of fish. Journal of Ichthyology, 51, 1035-1103. https://doi.org/10.1134/S003294521111004X

Kotrschal, K., Whitear, M., & Finger, T. E. (1993). Spinal and facial innervation of the skin in the gadid fish Ciliata mustela (Teleostei). Journal of Comparative Neurology, 331, 407-417. https://doi.org/10.1002/cne.903310310

Lane, E. B., & Whitear, M. (1977). On the occurrence of Merkel cells in the epidermis of teleost fishes. Cell and Tissue Research, 182:235-246. https://doi.org/10.1007/BF00220592

Lundqvist, M., Arnberg, H., Candell, J., Malmgren, M., Wilander, E., Grimelius, L., & Öberg, K. (1990). Silver stains for identification of neuroendocrine cells. A study of the chemical background. Histochemical Journal, 22, 615-623. https://doi.org/10.1007/BF01072943

Mazzoni, T. S., & Quagio-Grassiotto, I. (2020). In totum immunostaining: A histological analysis tool for small dimensions biological samples. International Journal of Biological and Medical Research, 11, 6938-6943

Mazzoni, T. S., & Quagio-Grassiotto, I. (2021). Presence of the matrix metalloproteinases during the migration of the primordial germ cells in zebrafish gonadal ridge. Cell and Tissue Research, 383, 707-722. https://doi.org/10.1007/s00441-020-03288-5

Montuenga, L. M., Guembe, L., Burrell, A., Bodegas, M. E., Calvo, A., Sola, J. J., Sesma, P., & Villaro, A. C. (2003). The diffuse endocrine system: from embryogenesis to carcinogenesis. Progress in Histochemistry and Cytochemistry, 38, 155-272. https://doi.org/10.1016/S0079-6336(03)80004-9

Nurse, C. A., & Farraway, L. (1989). Characterization of Merkel cells and mechanosensory axons of the rat by styryl pyridinium dyes. Cell and Tissue Research, 255, 125-128. https://doi.org/10.1007/BF00229073

Rajan, S. T., & Malathi, N. (2014). Health hazards of xylene: a literature review. Journal of Clinical and Diagnostic Research, 8, 271-274. https://doi.org/10.7860/JCDR/2014/7544.4079

Rakers, S., Gebert, M., Uppalapati, S., Meyer, W., Maderson, P., Sell, A. F., Kruse, C., & Paus, R. (2010). ‘Fish matters’: the relevance of fish skin biology to investigative dermatology. Experimental Dermatology, 19, 313-324. https://doi.org/10.1111/j.1600-0625.2009.01059.x

Ramírez, G. A., & de los Monteros, A. E. (2019). Study on the role of histochemical stains in identifying Merkel cells in dogs. The Anatomical Records, 302, 1458-1464. https://doi.org/10.1002/ar.24013

Shephard, K. L. (1994). Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4, 401-429. https://doi.org/10.1007/BF00042888

Slominski, A. (2005). Neuroendocrine system of the skin. Dermatology, 211, 199-208. https://doi.org/10.1159/000087012

Tachibana, T., Ishizeki, K., Sakakura, Y., & Nawa, T. (1984). Ultrastructural evidence for a possible secretory function of Merkel cells in the barbels of a teleost fish, Cyprinus carpio. Cell and Tissue Research, 235, 695-697. https://doi.org/10.1007/BF00226971

Tachibana, T., & Nawa, T. (2002). Recent progress in studies on Merkel cell biology. Anatomical Science International, 77, 26-33. https://doi.org/10.1046/j.0022-7722.2002.00008.x

Tachibana, T. (2005). The Merkel cell: recent findings and unresolved problems. Archives of Histology and Cytology, 58, 379-396. https://doi.org/10.1679/aohc.58.379

Weihe, E., Hartschuh, W., Schäfer, M. K., Romeo, H., & Elden, L. E. (1998). Cutaneous Merkel cells of the rat contain both dynorphin A and vesicular monoamine transporter type 1 (VMAT1) immunoreactivity. Canadian Journal of Physiology and Pharmacology, 76, 334-339. https://doi.org/10.1139/y98-032

Whitear, M., & Lane, E. B. (1981). Fine structure of Merkel cells in lamprey. Cell and Tissue Research, 220, 139-151. https://doi.org/10.1007/BF00209973

Zaccone, G. (1986). Neuron-specific enolase and serotonin in the Merkel cells of conger-eel (Conger conger) epidermis: An immunohistochemical study. Histochemistry, 85, 29-34. https://doi.org/10.1007/BF00508650.

Zaccone, G., Fasulo, S., & Ainis, L. (1994). Distribution cells in the determined histological patterns of the paraneuronal endocrine skin, gills and the airways of fishes as by immunohistochemical and methods. Histochemical Journal, 26, 609-629. https://doi.org/10.1007/BF00158286

Zhou, J., Wu, Q., Wang, Z., & Ye, Y. (2004). Molecular phylogeny of three subspecies of common carp Cyprinus carpio, based on sequence analysis of cytochrome b and control region of mtDNA. Journal of Zoological Systematics and Evolutionary Research, 42, 266-269. https://doi.org/10.1111/j.1439-0469.2004.00266.x

Downloads

Published

2025-12-08

How to Cite

Conrado, A. L. V., & Silva, J. R. M. C. da. (2025). Adapted silver impregnation protocol for the detection of Merkel cells in fish skin embedded in plastic historesins. Brazilian Journal of Science, 5(1), 41–46. https://doi.org/10.14295/bjs.v5i1.813

Issue

Section

Agrarian and Biological Sciences