Analysis of the coupling of twenty-five benzothiazole analogs with the β1-adrenergic receptor using a theoretical model

Authors

DOI:

https://doi.org/10.14295/bjs.v4i12.803

Keywords:

benzothiazole, analogs, hypertension, metoprolol, propranolol

Abstract

Some benzothiazoles have been developed with biological activity on the cardiovascular system through interaction with different biomolecules; however, the coupling with the β1-adrenergic receptor is not clear. This research aimed to determine the interaction of some benzothiazole analogs (1-25) with the β1-adrenergic receptor using some theoretical models. In this way, 2ycv protein and the controls (metoprolol, propranolol, and cyanopindolol) were used as theoretical tools in the DockingServer software. The results showed differences in the interaction of benzothiazole derivatives compared with the controls. Other data indicate that the inhibition constant (Ki) for benzothiazole analogs 10, 22, 23, and 25 was lower compared with metoprolol and cyanopindolol. All these data indicate that compounds 10, 22, 23, and 25 may act as β1-adrenergic receptor inhibitors, translated into changes in blood pressure. Therefore, the benzothiazole derivatives 10, 22, 23, and 25 could be good antihypertensive agents.

References

Alsaeid, M., Sung, S., Bai, W., Tam, M., Wong, Y. J., Cortes, J., & Abraldes, J. (2024). Heterogeneity of treatment response to beta-blockers in the treatment of portal hypertension: A systematic review. Hepatology Communications, 8(2), e0321.

Askerova, U. (2023). Prediction of acute toxicity for (Z)-3-(2-phenylhydrazinylidene) benzofuran-2 (3H)-one and its derivatives for rats using GUSAR program. New Materials, Compounds and Applications, 7(1), 50-56.

Azzam, K. (2023). SwissADME and pkCSM webservers predictors: An integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex use of Mineral Resources, 325(2), 14-21. https://doi.org/10.31643/2023/6445.13

Baud, S., & De-Azevedo, W. (2025). Protein-Ligand Docking Simulations for Drug Discovery. Current Medicinal Chemistry, 32(28), 5879-5881. https://doi.org/10.2174/0109298673410629250520111827

Chong, B., Jayabaskaran, J., Jauhari, S., Chan, S., Goh, R., Kueh, M., & Chan, M. Y. (2025). Global burden of cardiovascular diseases: projections from 2025 to 2050. European Journal of Preventive Cardiology, 32(11), 1001-1015. https://doi.org/10.1093/eurjpc/zwae281

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.

Ding, H., Shi, C., Xu, X., & Yu, L. (2020). Drug-induced chronic cough and the possible mechanism of action. Annals of Palliative Medicine, 9(5), 3562570-3563570.

Gomeni, R. (1984). PHARM—an interactive graphic program for individual and population pharmacokinetic parameter estimation. Computers in Biology and Medicine, 14(1), 25-34. https://doi.org/10.1016/0010-4825(84)90017-9

Goshain, O., & Ahmed, B. (2019). Antihypertensive activity, toxicity and molecular docking study of newly synthesized xanthon derivatives (xanthonoxypropanolamine). PLoS One, 14(8), e0220920. https://doi.org/10.1371/journal.pone.0220920

Handler, J. (2011). Adverse Effects Using Combined Rate‐Slowing Antihypertensive Agents. The Journal of Clinical Hypertension, 13(7), 529. https://doi.org/10.1111/j.1751-7176.2011.00486.x

Hansson, L., Lindholm, L., Niskanen, L., Lanke, J., Hedner, T., Niklason, A., & Björck, J. E. (1999). Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. The Lancet, 353(9153), 611-616.

Hara, Y., Nakahara, H., Miyagishi, A., & Nakatani, H. (1983). Antihypertensive effect of arotinolol (S-596), a new adrenergic beta blocking agent, on experimental hypertension. Nihon Yakurigaku Zasshi. Folia Pharmacologica Japonica, 82(2), 103-116.

Hardy, S., Jaeger, B., Foti, K., Ghazi, L., Wozniak, G., & Muntner, P. (2025). Trends in blood pressure control among US adults with hypertension, 2013–2014 to 2021–2023. American Journal of Hypertension, 38(2), 120-128. https://doi.org/10.1093/ajh/hpae141

Humbert, M., McLaughlin, V., Badesch, D., Ghofrani, H., Gibbs, J., Gomberg-Maitland, M., & Hoeper, M. (2025). Sotatercept in patients with pulmonary arterial hypertension at high risk for death. New England Journal of Medicine, 392(20), 1987-2000. https://doi.org/10.1056/NEJMoa2415160

Imaeda, Y., Tokuhara, H., Fukase, Y., Kanagawa, R., Kajimoto, Y., Kusumoto, K., & Kuroita, T. (2016). Discovery of TAK-272: a novel, potent, and orally active renin inhibitor. ACS Medicinal Chemistry Letters, 7(10), 933-938. https://doi.org/10.1021/acsmedchemlett.6b00251

Joseph, P., Leong, D., McKee, M., Anand, S., Schwalm, J., Teo, K., & Yusuf, S. (2017). Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circulation Research, 121(6), 677-694. https://doi.org/10.1161/CIRCRESAHA.117.308903

Kario, K., Hoshide, S., & Mogi, M. (2025). Hypertension Research global initiatives 2025 added new themes “implementation of hypertension” and” morning hypertension”. Hypertension Research, 48(3), 877-878.

Klatsky, A. (2009). Alcohol and cardiovascular diseases. Expert Review of Cardiovascular Therapy, 7(5), 499-506. https://doi.org/10.1586/erc.09.22

Klopman, G., & Rosenkranz, H. (1995). Toxicity estimation by chemical structure analysis: the TOX II program. Toxicology Letters, 79(1-3), 145-155. https://doi.org/10.1016/0378-4274(95)03366-S

Koliaki, C., Liatis, S., & Kokkinos, A. (2019). Obesity and cardiovascular disease: revisiting an old relationship. Metabolism, 92, 98-107. https://doi.org/10.1016/j.metabol.2018.10.011

Kondo, T., Nakano, Y., Adachi, S., & Murohara, T. (2019). Effects of tobacco smoking on cardiovascular disease. Circulation Journal, 83(10), 1980-1985. https://doi.org/10.1253/circj.CJ-19-0323

Krimmer, S., & Klebe, G. (2015). Thermodynamics of protein–ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data. Journal of Computer-Aided Molecular Design, 29(9), 867-883.

Lee, C., Kim, J.., Jang, H., Park, S., & Kang, S. K. (1989). Clinical Trial on the Hypotensive Effect of Arotinolol (S-596) in Essential Hypertension. Korean Circulation Journal, 19(2), 325-331. https://doi.org/10.4070/kcj.1989.19.2.325

Li, Y., Mu, S., Huang, Q., Jin, J., Tong, Y., Wang, R., & Li, W. (2025). Population pharmacokinetics of nifedipine in high‐altitude and plain patients with hypertension. The Journal of Clinical Pharmacology. https://doi.org/10.1002/jcph.70087

Liu, J. (2025). Highlights of the 2024 Chinese hypertension guidelines. Hypertension Research, 48(3), 1048-1053.

Morini, G., Poli, E., Comini, M., Menozzi, A., & Pozzoli, C. (2005). Benzisothiazoles and β-adrenoceptors: Synthesis and pharmacological investigation of novel propanolamine and oxypro-panolamine derivatives in isolated rat tissues. Archives of Pharmacal Research, 28(12), 1317-1323.

Mortensen, M., & Nordestgaard, B. (2020). Elevated LDL cholesterol and increased risk of myocardial infarction and atherosclerotic cardiovascular disease in individuals aged 70–100 years: a contemporary primary prevention cohort. The Lancet, 396(10263), 1644-1652.

Nagamoto, T., Tsuchihashi, H., Sasaki, M., Nakagawa, Y., Nakahara, H., & Imal, S. (1984). Beta-receptor blocking potencies of the three newly synthesized β-adrenergic antagonists (S-596, K-351, N-696) as assessed with the radioligand binding assay method in rat cardiac muscle membrane treated with neuraminidase. The Japanese Journal of Pharmacology, 34(2), 249-254. https://doi.org/10.1254/jjp.34.249

Okamoto, L., Gamboa, A., Shibao, C., Arnold, A., Choi, L., Black, B., & Biaggioni, I. (2014). Nebivolol, but not metoprolol, lowers blood pressure in nitric oxide–sensitive human hypertension. Hypertension, 64(6), 1241-1247. https://doi.org/10.1161/HYPERTENSIONAHA.114.04116

Oktaviani, N., Ivansyah, A., Saputra, M., Handayani, N., Fadylla, N., & Wahyuningrum, D. (2023). Potential application of bisoprolol derivative compounds as antihypertensive drugs: synthesis and in silico study. Royal Society Open Science, 10(12), 231112. https://doi.org/10.1098/rsos.231112

Olsson, T., Williams, M., Pitt, W., & Ladbury, J. (2008). The thermodynamics of protein–ligand interaction and solvation: insights for ligand design. Journal of Molecular Biology, 384(4), 1002-1017. https://doi.org/10.1016/j.jmb.2008.09.073

Rahman, M., Hussain, H., Akram, H., Gulzar, F., Nouman, M., Farooq, H., & Kalsoom, Z. (2025). Nifedipine's synergistic therapeutic potential: overcoming challenges and embracing novel applications in pharmacotherapy. Prospects in Pharmaceutical Sciences, 23(2), 101-115. https://doi.org/10.56782/pps.344

Roncaglioni, A., Toropov, A., Toropova, A., & Benfenati, E. (2013). In silico methods to predict drug toxicity. Current Opinion in Pharmacology, 13(5), 802-806. https://doi.org/10.1016/j.coph.2013.06.001

Sarafidis, P., Schmieder, R., Burnier, M., Persu, A., Januszewicz, A., Halimi, J., & Kreutz, R. (2024). A European renal association (ERA) synopsis for nephrology practice of the 2023 european society of hypertension (ESH) guidelines for the management of arterial hypertension. Nephrology Dialysis Transplantation, 39(6), 929-943. https://doi.org/10.1093/ndt/gfae041

Schroeder, L., & Seifert, R. (2025). The 10 top prescribed medicines in Germany from 1985 to 2022: pharmacological analysis. Naunyn-Schmiedeberg's Archives of Pharmacology, 398(5), 5509-5529.

Shah, S., Zhang, J., Gwini, S., Young, M., Fuller, P., & Yang, J. (2024). Efficacy and safety of mineralocorticoid receptor antagonists for the treatment of low-renin hypertension: a systematic review and meta-analysis. Journal of Human Hypertension, 38(5), 383-392.

Shumaker, R.. (1986). PKCALC: a basic interactive computer program for statistical and pharmacokinetic analysis of data. Drug Metabolism Reviews, 17(3-4), 331-348. https://doi.org/10.3109/03602538608998295

Srinivasan, A. (2019). Propranolol: A 50-year historical perspective. Annals of Indian Academy of Neurology, 22(1), 21-26.

Stoller, J., Elghazawi, A., Mehta, A., & Vidt, D. (1988). Captopril-induced cough. Chest, 93(3), 659-661.

Strickland, E., Geer, M., Tran, D., Adhikari, J., West, G., DeArmond, P., & Fitzgerald, M. (2013). Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nature Protocols, 8(1), 148-161.

Tang, H., Zhu, Y., Teumelsan, N., Walsh, S., Shahripour, A., Priest, B., & Pasternak, A. (2016). Discovery of MK-7145, an oral small molecule ROMK inhibitor for the treatment of hypertension and heart failure. ACS Medicinal Chemistry Letters, 7(7), 697-701. https://doi.org/10.1021/acsmedchemlett.6b0012

Tatsuno, H., Goto, K., Shigenobu, K., & Kasuya, Y. (1976). Antiarrhythmic action of a new β-adrenergic blocking agent, 6-(2-hydroxy-3-isopropylaminopropyloxy)-benzothiazole succinate (KF-577), compared with that of propranolol. European Journal of Pharmacology, 40(1), 145-152.https://doi.org/10.1016/0014-2999(76)90364-2

Taylor, R., Jewsbury, P., & Essex, J. (2002). A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design, 16(3), 151-166.

Timmis, A., Vardas, P., Townsend, N., Torbica, A., Katus, H., De Smedt, D., & Achenbach, S. (2022). European Society of Cardiology: cardiovascular disease statistics 2021. European Heart Journal, 43(8), 716-799. https://doi.org/10.1093/eurheartj/ehab892

Toropov, A., Toropova, A., Raska, I., Leszczynska, D., & Leszczynski, J. (2014). Comprehension of drug toxicity: software and databases. Computers in Biology and Medicine, 45, 20-25. https://doi.org/10.1016/j.compbiomed.2013.11.013

Urien, S. (1995). MicroPharm-K, a microcomputer interactive program for the analysis and simulation of pharmacokinetic processes. Pharmaceutical Research, 12(8), 1225-1230.

Waters, M., & Auletta, A. (1981). The GENE-TOX program: genetic activity evaluation. Journal of Chemical Information and Computer Sciences, 21(1), 35-38. https://doi.org/10.1021/ci00029a007

Weber, K., Bohmeke, T., Van der Does, R., & Taylor, S. H. (1998). Hemodynamic differences between metoprolol and carvedilol in hypertensive patients. American Journal of Hypertension, 11(5), 614-617. https://doi.org/10.1016/S0895-7061(98)00017-X

Williams, E., Katholi, R., & Karambelas, M. (2006). Use and side‐effect profile of spironolactone in a private cardiologist's practice. Clinical Cardiology: An International Indexed and Peer‐Reviewed Journal for Advances in the Treatment of Cardiovascular Disease, 29(4), 149-153. https://doi.org/10.1002/clc.4960290405

Wu, Z., Bao, X. L., Zhu, W., Wang, Y., Phuong Anh, N., Wu, X., & Chen, Z. L. (2018). Design, synthesis, and biological evaluation of 6-benzoxazole benzimidazole derivatives with antihypertension activities. ACS Medicinal Chemistry Letters, 10(1), 40-43. https://doi.org/10.1021/acsmedchemlett.8b00335

Zhang, Y., Huo, M., Zhou, J., & Xie, S. (2010). PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Computer Methods and Programs in Biomedicine, 99(3), 306-314. https://doi.org/10.1016/j.cmpb.2010.01.007

Downloads

Published

2025-11-05

How to Cite

Alvarez-Ramirez, M., Rosas-Nexticapa, M., Mateu-Armad, M. V., & Bonilla- Zavaleta, E. (2025). Analysis of the coupling of twenty-five benzothiazole analogs with the β1-adrenergic receptor using a theoretical model. Brazilian Journal of Science, 4(12), 44–55. https://doi.org/10.14295/bjs.v4i12.803