Intramolecular interaction analysis of twenty-seven benzothiazole derivatives with CDK9 using a theoretical model

Authors

  • Marcela Rosas Nexticapa Nutrition Laboratory, Faculty of Nutrition, University of Veracruz, Medicos y s/n Odontologos 910210, Unidad del Bosque, Xalapa, Mexico https://orcid.org/0000-0001-7119-4728
  • Magdalena Alvarez-Ramirez Nutrition Laboratory, Faculty of Nutrition, University of Veracruz, Medicos y s/n Odontologos 910210, Unidad del Bosque, Xalapa, Mexico https://orcid.org/0000-0003-0046-4342
  • Maria Virginia Mateu-Armad Nutrition Laboratory, Faculty of Nutrition, University of Veracruz, Medicos y s/n Odontologos 910210, Unidad del Bosque, Xalapa, Mexico https://orcid.org/0000-0003-3283-0001
  • Regina Cauich-Carrillo Universidad Vizcaya de las Américas, Av. Boulevard Bahia, 422, Col. Zona de Granjas, Chetumal Quintana Roo, C.P. 77079, Mexico https://orcid.org/0000-0002-7166-5048

DOI:

https://doi.org/10.14295/bjs.v4i12.798

Keywords:

cancer, benzothiazole, CDK9, 3ocb protein

Abstract

There are studies indicating that some drugs can regulate cancer cell growth through CDK9 inhibition. This study aimed to evaluate the possibility of twenty-seven benzothiazole analogs interacting with CDK9 using the 3ocb protein as a theoretical tool. In addition, the fedracib, KB-0742, and N-vinylpyrrolidone drugs were used as controls in the DockingServer program. The results showed different amino acid residues involved in the docking of benzothiazole derivatives (1-27) with the 3ocb protein surface compared to the controls. Other data displayed that the inhibition constant (Ki) was lower for compounds 1, 4, 7, 9, 11, 13-15, 17, 19-21, 22, 24, and 26 compared to KB-0742 and N-Vinylpyrrolidone. All this data indicate that these benzothiazole derivatives might have a higher affinity for the 3ocb protein surface, and this phenomenon could be translated as a CDK9 inhibition, resulting in a decrease in cancer cell growth.

References

Anshabo, A., Milne, R., Wang, S., & Albrecht, H. (2021). CDK9: a comprehensive review of its biology and its role as a potential target for anti-cancer agents. Frontiers in Oncology, 11, 678559. https://doi.org/10.3389/fonc.2021.678559

Askerova, U. (2023). Prediction of acute toxicity for (Z)-3-(2-phenylhydrazinylidene) benzofuran-2 (3H)-one and its derivatives for rats using GUSAR program. New Materials, Compounds and Applications, 7(1), 50-56.

Azzam, R., & Elgemeie, G. (2023). Purine analogs: synthesis, evaluation and molecular dynamics of pyrazolopyrimidines based benzothiazole as anticancer and antimicrobial CDK inhibitors. Nucleosides, Nucleotides & Nucleic Acids, 42(1), 77-104. https://doi.org/10.1080/15257770.2022.2109169

Bakchi, B., Krishna, A., Sreecharan, E., Ganesh, V., Niharika, M., Maharshi, S., & Shaik, A. B. (2022). An overview on applications of SwissADME web tool in the design and developmentof anticancer, antitubercular and antimicrobial agents: a medicinal chemist's perspective. Journal of Molecular Structure, 1259, 132712. https://doi.org/10.1016/j.molstruc.2022.132712

Banerjee, P., Eckert, A., Schrey, A., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257-W263. https://doi.org/10.1093/nar/gky318

Barili, V., Ambrosini, E., Bortesi, B., Minari, R., De Sensi, E., Cannizzaro, I. R., & Pellegrino, B. (2024). Genetic basis of breast and ovarian cancer: approaches and lessons learnt from three decades of inherited predisposition testing. Genes, 15(2), 219. https://www.mdpi.com/2073-4425/15/2/219#

Baroni M., Cruciani, G., Sciabola, S., Perruccio, F., Mason, J. (2007). A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): Theory and application. Journal of Chemical Information and Modeling, 47(2), 279-294. https://doi.org/ 10.1021/ci600253e

Boffo, S., Damato, A., Alfano, L., & Giordano, A. (2018). CDK9 inhibitors in acute myeloid leukemia. Journal of Experimental & Clinical Cancer Research, 37(1), 36.

Çakmak, C., & Uğurluoğlu, Ö. (2024). The effects of patient-centered communication on patient engagement, health-related quality of life, service quality perception and patient satisfaction in patients with cancer: a cross-sectional study in Türkiye. Cancer Control, 31, 10732748241236327. https://doi.org/10.1177/10732748241236327

Chen, I., & Foloppe, N. (2008). Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. Journal of Chemical Information and Modeling, 48(9), 1773-1791.

Chen, R., Wierda, W. G., Chubb, S., Hawtin, R., Fox, J., Keating, M., & Plunkett, W. (2009). Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood, The Journal of the American Society of Hematology, 113(19), 4637-4645.

Chen, Z., Wang, Z., Pang, J., Yu, Y., Bieerkehazhi, S., Lu, J., & Yang, J. (2016). Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Scientific Reports, 6(1), 29090.

Deep, A., Marwaha, R., Marwaha, M., Nandal, R., & Sharma, A. K. (2018). Flavopiridol as cyclin dependent kinase (CDK) inhibitor: a review. New Journal of Chemistry, 42(23), 18500-18507.https://doi.org/10.1039/C8NJ04306J

Di Muzio, E. Toti, D., & Polticelli, F. (2017). DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina. Journal of Computer-Aided Molecular Design, 31, 213-218

Dixit, J., Gupta, N., Kataki, A., Roy, P., Mehra, N., Kumar, L., & Prinja, S. (2024). Health-related quality of life and its determinants among cancer patients: evidence from 12,148 patients of Indian database. Health and Quality of Life Outcomes, 22(1), 26.

Dixon, S., Smondyrev, A., Knoll, E., Rao, S., Shaw, D., & Friesner, R. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10-11), 647-671. https://doi.org/10.1007/s10822-006-9087-6

Figueroa-Valverde, L., Diaz-Cedillo, F., Rosas-Nexticapa, M., Cervantes-Ortega, C., Alvarez-Ramirez, M., Mateu-Armand, V., & Lopez-Ramos, M. (2023). Analysis of Interaction between Twenty-Seven Pyrimidinone Derivatives with XIAP Using a Theoretical Model. Clinical Cancer Investigation Journal, 12(3), 13-18. https://doi.org/10.51847/2bWWpF0Bdl Khedr, M. A., Zaghary, W. A., Elsherif, G. E.,

Figueroa-Valverde, L., Rosas-Nexticapa, M., Alvarez-Ramirez, M., Aguilar-Sanchez, E., Mateu-Armad, M. V., & Bonilla-Zavaleta, E. (2024). Interaction of some chalcone derivatives with calcium channels using a theoretical model. Brazilian Journal of Science, 3(11), 1-15. https://doi.org/10.14295/bjs.v3i11.658

Franco, L., Morales, F., Boffo, S., & Giordano, A. (2018). CDK9: A key player in cancer and other diseases. Journal of Cellular Biochemistry, 119(2), 1273-1284. https://doi.org/10.1002/jcb.26293

Habib, I., Chohan, T., Chohan, T., Batool, F., Khurshid, U., Khursheed, A., & Saleem, H. (2024). Integrated computational approaches for designing potent pyrimidine-based CDK9 inhibitors: 3D-QSAR, docking, and molecular dynamics simulations. Computational Biology and Chemistry, 108, 108003. https://doi.org/10.1016/j.compbiolchem.2023.108003

Halgren. (1998). Merck molecular force field. I. Basis, form, scope, parametrization, and performance of MMFF94. Journal of Computational Chemistry, 17(5-6), 490-519.

Housini, M., Dariya, B., Ahmed, N., Stevens, A., Fiadjoe, H., Nagaraju, G. P., & Basha, R. (2024). Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene, 892, 147857. https://doi.org/10.1016/j.gene.2023.147857

Hussain, A., Verma, C., & Chouhan, U. (2017). Identification of novel inhibitors against Cyclin Dependent Kinase 9/Cyclin T1 complex as: Anti cancer agent. Saudi Journal of Biological Sciences, 24(6), 1229-1242.https://doi.org/10.1016/j.sjbs.2015.10.003

Ionescu, A., Anghel, A., Antone-Iordache, I., Atasiei, D., Anghel, C., Barnonschi, A., & Lișcu, H. (2024). Assessing the impact of organ failure and metastases on quality of life in breast cancer patients: a prospective study based on utilizing EORTC QLQ-C30 and EORTC QLQ-BR45 questionnaires in Romania. Journal of Personalized Medicine, 14(2), 214. https://www.mdpi.com/2075-4426/14/2/214#

Irfan, A., Batool, F., Zahra Naqvi, S., Islam, A., Osman, S., Nocentini, A., & Supuran, C. T. (2020). Benzothiazole derivatives as anticancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 265-279.https://doi.org/10.1080/14756366.2019.1698036

Kini, S., Swain, S., & Gandhi, A. (2007). Synthesis and evaluation of novel benzothiazole derivatives against human cervical cancer cell lines. Indian Journal of Pharmaceutical Sciences, 69(1), 46-50.

Koes, D., Camacho, C. (2011). Pharmer: Efficient and exact pharmacophore search. Journal of Chemical Information and Modeling, 51(6), 1307-1314. https://doi.org/ 10.1021/ci200097m

Kok, S., Gambari, R., Chui, C., Yuen, M., Lin, E., Wong, R., & Chan, A. (2008). Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorganic & Medicinal Chemistry, 16(7), 3626-3631. https://doi.org/10.1016/j.bmc.2008.02.005

Lee, D., & Zeidner, J. (2019). Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opinion on Investigational Drugs, 28(11), 989-1001. https://doi.org/10.1080/13543784.2019.1678583

Lücking, U., Scholz, A., Lienau, P., Siemeister, G., Kosemund, D., Bohlmann, R., & Brands, M. (2017). Identification of atuveciclib (BAY 1143572), the first highly selective, clinical PTEFb/CDK9 inhibitor for the treatment of cancer. ChemMedChem, 12(21), 1776-1793.https://doi.org/10.1002/cmdc.201700447

Liu, H., Guo, Z., & Wang, P. (2024). Genetic expression in cancer research: challenges and complexity. Gene reports, 37,102042. https://doi.org/10.1016/j.genrep.2024.102042

Ma, H., Seebacher, N., Hornicek, F., & Duan, Z. (2019). Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine, 39, 182-193.

Mandal, R., Becker, S., & Strebhardt, K. (2021). Targeting CDK9 for anti-cancer therapeutics. Cancers, 13(9), 2181. https://www.mdpi.com/2072-6694/13/9/2181#

Mohamed, L., Taher, A., Rady, G., Ali, M., & Mahmoud, A. (2017). Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF‐7 cancer cell line. Chemical Biology & Drug Design, 89(4), 566-576.https://doi.org/10.1111/cbdd.12879

Morales, F., & Giordano, A. (2016). Overview of CDK9 as a target in cancer research. Cell Cycle, 15(4), 519-527. https://doi.org/10.1080/15384101.2016.1138186

Morris, M., Goodsell, D., Hallyday, R., Huey, R., Hart, W., Belew, R., & Olson, A. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14%3C1639:AID-JCC10%3E3.0. CO;2-B

Noblejas-López, M., Gandullo-Sánchez, L., Galán-Moya, E., López-Rosa, R., Tébar-García, D., Nieto-Jiménez, C., & Ocaña, A. (2022). Antitumoral activity of a CDK9 PROTAC compound in HER2-positive breast cancer. International Journal of Molecular Sciences, 23(10), 5476. https://doi.org/10.3390/ijms23105476

Parvathareddy, S., Siraj, A., Masoodi, T., Annaiyappanaidu, P., Al-Badawi, I., Al-Dayel, F., & Al-Kuraya, K. (2021). Cyclin-dependent kinase 9 (CDK9) predicts recurrence in Middle Eastern epithelial ovarian cancer. Journal of Ovarian Research, 14(1), 69.

Pathak, N., Rathi, E., Kumar, N., Kini, S., & Rao, C. (2020). A review on anticancer potentials of benzothiazole derivatives. Mini Reviews in Medicinal Chemistry, 20(1), 12-23. https://doi.org/10.2174/1389557519666190617153213

Plewczynski, D., Philips, A., Grotthuss, M., RychlewskiL., & Ginalski, K. (2014). HarmonyDOCK: the structural analysis of poses in protein-ligand docking. Journal of Computational Biology, 21(3), 247-256. https://doi.org/10.1089/cmb.2009.0111

Polier, G., Ding, J., Konkimalla, B., Eick, D., Ribeiro, N., Köhler, R., & Li-Weber, M. (2011). Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1. Cell Death & Disease, 2(7), e182-e182.

Riniker, S., Christ, C., Hansen, H., Hünenberger, P., Oostenbrink, C., Steiner, D., & Van-Gunsteren, W. (2011). Calculation of relative free energy for ligand-protein binding, solvation, and conformational transitions using the GROMOS software. The Journal of Physical Chemistry B, 115(46), 13570-13577. https://doi.org/10.1021/jp204303a

Saikat, A., Al-Khafaji, K., Akter, H., Choi, J., Hasan, M., & Lee, S. (2022). Nature-Derived Compounds as Potential Bioactive Leads against CDK9-Induced Cancer: Computational and Network Pharmacology Approaches. Processes, 10(12), 2512. https://doi.org/ 10.3390/pr10122512

Sarhadi, V. K., & Armengol, G. (2022). Molecular biomarkers in cancer. Biomolecules, 12, 1021. https://doi.org/10.3390/biom12081021

Shweta, M., & Rashmi, D. (2019). In-vitro ADME studies of TUG-891, a GPR-120 inhibitor using Swiss ADME predictor. Journal of Drug Delivery and Therapeutics, 9(2-S), 266-369.

Singh, P., Kumar, V., Jung, T., Lee, J., Lee, K., & Hong, J. (2024). Uncovering potential CDK9 inhibitors from natural compound databases through docking-based virtual screening and MD simulations. Journal of Molecular Modeling, 30(8), 267.

Solis, F., & Wets, R. (1981). Minimization by Random Search Techniques. Mathematics of Operations Research, 6(1), 19-30. https://doi.org/10.1287/moor.6.1.19

Stankovic, S., Shekari, S., Huang, Q. Q., Gardner, E. J., Ivarsdottir, E. V., Owens, N. D., & Murray, A. (2024). Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature, 633(8030), 608-614.

Sushko, I., Salmina, E., Potemkin, V., Poda, G., & Tetko, I. (2012). ToxAlerts: a web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. Journal of Chemical Information and Modeling, 52(8), 2310-2316. https://doi.org/10.1021/ci300245q

Trosset, J., & Scheraga, H. (1999). PRODOCK: software package for protein modeling and docking. Journal of Computational Chemistry, 20(4), 412-427. https://doi.org/10.1002/(SICI)1096-987X(199903)20:4%3C412:AID-JCC3%3E3.0.CO;2-N

Uremis, N., Uremis, M., Tolun, F., Ceylan, M., Doganer, A., & Kurt, A. (2017). Synthesis of 2-substituted benzothiazole derivatives and their in vitro anticancer effects and antioxidant activities against pancreatic cancer cells. Anticancer Research, 37(11), 6381-6389.

Xie, S., Jiang, H., Zhai, X., Wei, F., Wang, S., Ding, J., & Chen, Y. (2016). Antitumor action of CDK inhibitor LS-007 as a single agent and in combination with ABT-199 against human acute leukemia cells. Acta Pharmacologica Sinica, 37(11), 1481-1489.

Zhang, H., Huang, J., Chen, R., Cai, H., Chen, Y., He, S., & Wang, L. (2022). Ligand-and structure-based identification of novel CDK9 inhibitors for the potential treatment of leukemia. Bioorganic & Medicinal Chemistry, 72, 116994. https://doi.org/10.1016/j.bmc.2022.116994

Zhang, H., Pandey, S., Travers, M., Sun, H., Morton, G., Madzo, J., & Issa, J. (2018). Targeting CDK9 reactivates epigenetically silenced genes in cancer. Cell, 175(5), 1244-1258.

Zhang, M., Xia, Y., Tan, Y., Xie, Z., & Li, J. (2024). Expression of CDK9 in Newly Diagnosed Patients with Acute Myeloid Leukemia and its Clinical Significance. Clinical Laboratory, 70(10).

Downloads

Published

2025-11-05

How to Cite

Nexticapa, M. R., Alvarez-Ramirez, M., Mateu-Armad, M. V., & Cauich-Carrillo, R. (2025). Intramolecular interaction analysis of twenty-seven benzothiazole derivatives with CDK9 using a theoretical model. Brazilian Journal of Science, 4(12), 28–43. https://doi.org/10.14295/bjs.v4i12.798