Entropic lifespan: Disorder and transformation in human life from birth to death

Authors

DOI:

https://doi.org/10.14295/bjs.v4i12.775

Keywords:

entropy, aging, interdisciplinary framework, natural systems, human development

Abstract

This study constructs an interdisciplinary framework to investigate entropy’s role across human life (biological, psychological, social) and natural systems, grounded in the thermodynamic principle of increasing disorder. The background reveals entropy’s relevance in aging, cognition, social roles, and ecosystems, yet a cohesive model remains undeveloped. The purpose is to integrate these domains, analyzing entropy from birth/emergence to death/collapse. Methods employ a mixed-model simulation with a modified Shannon entropy approach, tracking entropy in cellular degradation, cognitive disorder/growth, role dissolution/reorganization, and ecosystem decay over 100 years, with data evaluated at key stages (0, 20, 40, 70, 100 years). Findings indicate a synchronized entropy increase: biological from 0.10 to 4.00, psychological from 0.10 to 3.50, social from 0.10 to 3.00, and natural from 0.10 to 3.50, with midlife dips in psychological and social entropy due to adaptive processes. Strong correlations (e.g., biological vs. natural, r = 0.96) affirm a universal entropic pattern. The conclusion establishes entropy as a unifying framework, linking human aging to natural decay, with broad implications for health and ecology. Recommendations include empirical validation with longitudinal data, machine learning for dynamic modeling, and interventions (e.g., cognitive training, reforestation) to counter entropy’s effects. This framework bridges disciplines, providing a novel perspective on life’s entropic trajectory.

References

Baltes, P. B. (1987). Theoretical propositions of life-span developmental psychology: On the dynamics between growth and decline. Developmental Psychology, 23(5), 611-626. https://doi.org/10.1037/0012-1649.23.5.611

Bradford, M. A., Wood, S. A., & Bardgett, R. D. (2019). Entropy and ecosystem function. Nature Reviews Earth & Environment, 1(1), 24-32. https://doi.org/10.1038/s43017-019-0002-5

Bzdok, D., & Yeo, B. T. T. (2017). Inference in the age of big data: Future perspectives on neuroscience. NeuroImage, 155, 549-564. https://doi.org/10.1016/j.neuroimage.2017.04.028

Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (2011). Taking time seriously: A theory of socioemotional selectivity. American Psychologist, 66(3), 184-195. https://doi.org/10.1037/a0021651

Clausius, R. (1865). The mechanical theory of heat. Macmillan.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum.

Cornwell, B., & Waite, L. J. (2009). Social disconnectedness, perceived isolation, and health among older adults. Journal of Health and Social Behavior, 50(1), 31-48. https://doi.org/10.1177/002214650905000103

De Magalhães, J. P. (2020). The biology of aging: From molecular mechanisms to therapeutic interventions. Aging Cell, 19(3), e13102. https://doi.org/10.1111/acel.13102

Epstein, J. M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton University Press.

Erikson, E. H. (1950). Childhood and society. Norton.

Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2013). The importance of being variable. Journal of Neuroscience, 33(32), 12944-12952. https://doi.org/10.1523/JNEUROSCI.0805-13.2013

Grady, C. (2012). The cognitive neuroscience of aging. Nature Reviews Neuroscience, 13(7), 491-505. https://doi.org/10.1038/nrn3256

Guastello, S. J. (2015). The role of entropy in cognitive and psychological processes. Nonlinear Dynamics, Psychology, and Life Sciences, 19(4), 435-458.

Hawkley, L. C., Wroblewski, K., & Cacioppo, J. T. (2019). Are the lonely a unique group of older adults? Psychology and Aging, 34(2), 228-239. https://doi.org/10.1037/pag0000330

Hayflick, L. (1994). How and why we age. Ballantine Books.

Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115

Kennedy, B. K., Berger, S. L., & Brunet, A. (2014). Geroscience: Linking aging to chronic disease. Cell, 159(4), 709-713. https://doi.org/10.1016/j.cell.2014.10.039

Hooyman, N. R., & Kiyak, H. A. (2011). Social gerontology: A multidisciplinary perspective (9th ed.). Pearson.

Jørgensen, S. E. (2018). Thermodynamics and ecological modeling. Ecological Modelling, 383, 1-10. https://doi.org/10.1016/j.ecolmodel.2018.05.010

Kitano, H. (2002). Systems biology: A brief overview. Science, 295(5560), 1662-1664. https://doi.org/10.1126/science.1069492

Kleidon, A. (2016). Thermodynamic foundations of the Earth system. Cambridge University Press. https://doi.org/10.1017/CBO9781139342117

Lachman, M. E. (2015). Mind the gap: The importance of midlife for lifespan development. Research in Human Development, 12(3–4), 203-210. https://doi.org/10.1080/15427609.2015.1068054

López-Otín, C., Blasco, M. A., Partridge, L., et al. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039

McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2014). Increased brain signal variability accompanies lower behavioral variability in development. PLOS Computational Biology, 10(7), e1003743. https://doi.org/10.1371/journal.pcbi.1003743

Odum, E. P. (1983). Basic ecology. Saunders College Publishing.

Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173-196. https://doi.org/10.1146/annurev.psych.59.103006.093656

Prigogine, I., & Stengers, I. (1984). Order out of chaos: Man’s new dialogue with nature. Bantam Books.

Salthouse, T. A. (2019). Trajectories of normal cognitive aging. Psychology and Aging, 34(1), 17-24. https://doi.org/10.1037/pag0000288

Scheffer, M., Carpenter, S., & Foley, J. A. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591-596. https://doi.org/10.1038/35098000

Schrödinger, E. (1944). What is life? Cambridge University Press.

Settersten, R. A., & Hagestad, G. O. (2015). Subjective aging and new complexities of the life course. Annual Review of Gerontology and Geriatrics, 35(1), 3-28. https://doi.org/10.1891/0198-8794.35.3

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Smith, J., Ryan, L. H., & Paulson, D. (2020). Social network entropy and aging: A longitudinal analysis. Social Science & Medicine, 256, 113043. https://doi.org/10.1016/j.socscimed.2020.113043

Sternberg, R. J. (2020). The nature of human intelligence. Annual Review of Psychology, 71, 383-409. https://doi.org/10.1146/annurev-psych-010418-102928

Tornstam, L. (2011). Maturing into gerotranscendence. Journal of Aging Studies, 25(4), 296-305. https://doi.org/10.1016/j.jaging.2011.03.002

United Nations. (2023). World population ageing 2023. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpa2023.pdf

Wang, M., & Shi, J. (2014). Psychological research on retirement. Annual Review of Psychology, 65, 209-233. https://doi.org/10.1146/annurev-psych-010213-115131

World Health Organization. (2024). Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

World Health Organization. (2023). Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

Downloads

Published

2025-11-05

How to Cite

Goshu, B. (2025). Entropic lifespan: Disorder and transformation in human life from birth to death. Brazilian Journal of Science, 4(12), 14–27. https://doi.org/10.14295/bjs.v4i12.775

Issue

Section

Agrarian and Biological Sciences