Genetic diversity of ghrelin gene SNPs in Nigerian Indigenous chickens and its influence on growth traits

Authors

  • Azeem Oladiran Ige Department of Animal Nutrition and Biotechnology, P.M.B. 4000, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria https://orcid.org/0000-0002-5828-5534
  • Hammed Opeyemi Oladipupo Department of Animal Production and Health, P.M.B. 4000, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria https://orcid.org/0009-0003-0090-9011
  • Joy Oluwatosin Ajibulu Department of Animal Nutrition and Biotechnology, P.M.B. 4000, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria https://orcid.org/0009-0006-4053-4666
  • Hammed Olayemi Salawu Department of Animal Nutrition and Biotechnology, P.M.B. 4000, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria https://orcid.org/0000-0001-6951-7524
  • Matt-Obabu Abimbola Deborah Department of Animal Nutrition and Biotechnology, P.M.B. 4000, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria https://orcid.org/0009-0006-1199-4807
  • Kafayat Oladayo Akinniran Department of Animal Nutrition and Biotechnology, P.M.B. 4000, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria https://orcid.org/0009-0004-5006-339X

DOI:

https://doi.org/10.14295/bjs.v4i8.765

Keywords:

genetic, diversity, ghrelin, gene, SNPs, traits

Abstract

Genetic diversity in functional genes, such as the ghrelin gene, plays a significant role in understanding growth and productivity traits in chickens. This study investigates the genetic variability of the ghrelin gene in Nigerian indigenous chickens (NICs) and evaluates its potential influence on growth traits. Nigerian indigenous chickens are renowned for their adaptability to harsh environments, disease resistance, and cultural significance, but they are characterized by low productivity compared to exotic breeds. Blood was collected from samples of three major ecotypes of NICs: Naked Neck, Normal Feather, and Frizzle Feather. DNA was extracted, and polymorphisms in the ghrelin gene were identified using PCR amplification and sequencing techniques. Bioinformatic analyses were conducted to assess nucleotide diversity, haplotype frequency, and evolutionary dynamics of the gene. Phenotypic data on growth traits, including body weight, body length, chest circumference, shank length, beak length, comb length, and comb height, were recorded at different growth stages and correlated with identified ghrelin gene variants using statistical models. Results revealed high genetic diversity within the ghrelin gene, with several novel single-nucleotide polymorphisms (SNPs) detected. The polymorphisms were unevenly distributed across the gene regions, with some variants significantly associated with growth traits. Specific alleles were linked to enhanced BDW, BDL, CC, SHKL, BKL, CL, and CH, suggesting their potential role as genetic markers for growth performance. This research contributes to the growing knowledge on the genetic basis of growth traits in NIC populations. It emphasizes the need for conservation and sustainable utilization of NICs' genetic resources.

References

Aworh, M. K., Nilsson, P., Egyir, B., Owusu, F. A., & Hendriksen, R. S. (2024). Rare serovars of non-typhoidal Salmonella enterica isolated from humans, beef cattle and abattoir environments in Nigeria. Plos One, 19(1), e0296971. https://doi.org/10.1371/journal.pone.0296971 DOI: https://doi.org/10.1371/journal.pone.0296971

Chyb, A., Włodarczyk, R., Drzewińska‐Chańko, J., Jedlikowski, J., Walden, K. K., & Minias, P. (2023). Urbanization is associated with non‐coding polymorphisms in candidate behavioural genes in the Eurasian coot. Ecology and Evolution, 13(10), e10572. https://doi.org/10.1002/ece3.10572 DOI: https://doi.org/10.1002/ece3.10572

Google Earth Map. (2024). Geographical location of LAUTECH, Ogbomoso, Oyo State, Nigeria. Google LLC. http://earth.google.com/web/search/lautech+ ogbomoso: Date accessed October 25, 2024.

Huang, B. (2024). A comprehensive analysis of genomic advances and CRISPR/Cas9 applications in kiwifruit (Actinidia chinensis Planch.). International Journal of Horticulture, 14. https://doi.org/10.5376/ijh.2024.14.0033 DOI: https://doi.org/10.5376/ijh.2024.14.0033

Igbatigbi, L. O., Osaiyuwu, O. H., Fatai, R. B., Coker, O. M., & Fijabi, O. E. (2024). Diversity of the ghrelin gene in Nigeria’s Fulani and Yoruba ecotype chickens. Journal of Experimental Agriculture International, 46(5), 419-427. https://doi.org/10.9734/JEAI/2024/v46i52393 DOI: https://doi.org/10.9734/jeai/2024/v46i52393

Jain, A., Singh, A., Jain, T., Tiwari, S. P., Thakur, M. S., Khare, V., & Ansari, F. (2024). Recent updates on production and reproduction traits of buffalo (Bubalus bubalis): A review. The Indian Veterinary Journal, 101(10), 7-16. https://doi.org/10.62757/IVA.2024.101.10.7-16 DOI: https://doi.org/10.62757/IVA.2024.101.10.7-16

Kaiya, H. (2024). Update on feeding regulation by ghrelin in birds: Focused on brain network. Zoological Science, 41(1), 39-49. https://doi.org/10.2108/zs230071 DOI: https://doi.org/10.2108/zs230071

Kulkarni, S. S., Singh, O., & Zigman, J. M. (2024). The intersection between ghrelin, metabolism and circadian rhythms. Nature Reviews Endocrinology, 20(4), 228-238. https://doi.org/10.1038/s41574-023-00927-z DOI: https://doi.org/10.1038/s41574-023-00927-z

Kumar, P. (2023). Polymorphism in white turkey" submitted by Dr. Aruna TS, Roll no. P-2214, for the award of Doctor of Philosophy Degree in Animal Genetics (Doctoral dissertation, Indian Veterinary Research Institute).

Lima, B. D. (2024). Association of regulatory polymorphisms of gene expression with color phenotypes, water holding capacity, and pH of Nellore meat (Doctoral dissertation, Universidade de São Paulo).

Nalepa-Grajcar, J. A. (2024). Development and optimization of selective whole genome amplification to enrich samples with low Toxoplasma gondii DNA copies for whole genome sequencing (Doctoral dissertation, Aberystwyth University).

Ohagenyi, I. J., Ndofor-Foleng, H. M., Ugwu, S. O. & Okwelum, N. (2022). Polymorphism of ghrelin genes among four Nigerian chicken populations as tool for improvement of chickens. Indian Journal of Animal Sciences, 92(3): 323-326. https://doi.org/10.56093/ijans.v92i3.122264 DOI: https://doi.org/10.56093/ijans.v92i3.122264

Olaniyan, O. F., Oladejo, O. A., Adeola, A. C., Bello, S. F., Bashiru, H. A., & Oseni, S. O. (2024). Integration of genomics into community-based breeding programmes for chickens: an overview of opportunities, challenges, and potential benefits. World's Poultry Science Journal, 1-21. https://doi.org/10.1080/00439339.2024.2354194 DOI: https://doi.org/10.1080/00439339.2024.2354194

Perrin, A., Khimoun, A., Faivre, B., Ollivier, A., de Pracontal, N., Théron, F., Loubon, M., Leblond, G., Duron, O., & Garnier, S. (2020). Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species. Heredity, 126(1):148-162. https://doi.org/10.1038/s41437-020-00366-w DOI: https://doi.org/10.1038/s41437-020-00366-w

Rachman, M. P., Bamidele, O., Dessie, T., Smith, J., Hanotte, O., & Gheyas, A. A. (2024). Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Scientific Reports, 14(1), 2209. https://doi.org/10.1038/s41598-024-52569-4 DOI: https://doi.org/10.1038/s41598-024-52569-4

Schöneberg, T. (2025). Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiological Reviews, 1051, 383-439. https://doi.org/10.1152/physrev.00017.2024 DOI: https://doi.org/10.1152/physrev.00017.2024

Uberu, N. P., Oleforuh-Okoleh, V. U., Ndofor-Foleng, H. M., Agaviezor, B. O., Ohagenyi, J. I., Udeh, F. U., & Akuru, E. A. (2022). Molecular evolution of prolactin gene single nucleotide polymorphisms in Nigerian chicken ecotypes and their association with light ecotype chickens' egg traits. https://doi.org/10.47278/journal.ijvs/2021.079 DOI: https://doi.org/10.47278/journal.ijvs/2021.079

Volyanskaya, A. R., Akberdin, I. R., Kulyashov, M. A., Yevshin, I. S., Romanov, M. N., Shagimardanova, E. I., & Kolpakov, F. A. (2024). A bird’s-eye overview of molecular mechanisms regulating feed intake in chickens—with mammalian comparisons. Animal Nutrition, 12037. https://doi.org/10.1016/j.aninu.2024.01.008 DOI: https://doi.org/10.1016/j.aninu.2024.01.008

Vranceanu, M., Filip, L., Hegheș, S. C., de Lorenzo, D., Cozma-Petruț, A., Ghitea, T. C., & Popa, D. S. (2024). Genes involved in susceptibility to obesity and emotional eating behavior in a Romanian population. Nutrients, 16(16), 2652. https://doi.org/10.3390/nu16162652 DOI: https://doi.org/10.3390/nu16162652

Downloads

Published

2025-06-26

How to Cite

Ige, A. O., Oladipupo, H. O., Ajibulu, J. O., Salawu, H. O., Deborah, M.-O. A., & Akinniran, K. O. (2025). Genetic diversity of ghrelin gene SNPs in Nigerian Indigenous chickens and its influence on growth traits. Brazilian Journal of Science, 4(8), 57–65. https://doi.org/10.14295/bjs.v4i8.765

Issue

Section

Agrarian and Biological Sciences