Influence of CuSO₄ application rates during the vegetative stage on agronomic characteristics of Glycine max (L.) Merrill

Authors

DOI:

https://doi.org/10.14295/bjs.v4i7.758

Keywords:

bioaccumulation, copper sulfate, plant development, toxic effect, oxidative effect

Abstract

Several micronutrients are essential for the development of agriculturally important crops, including copper (Cu). This study aimed to evaluate the effects of different doses of copper sulfate (CuSO4), expressed as mg L-1 of elemental Cu, on early-maturing soybean during the vegetative phase. Plant parameters such as shoot and root length, fresh and dry biomass of shoots and roots, and Cu bioaccumulation (expressed in mg kg⁻¹) in roots and shoots were assessed. Eight Cu concentrations (0, 5, 15, 35, 85, 100, 125, and 600 mg L-1) were prepared and applied directly into the planting furrow. A precocious soybean cultivar was used. Measurements were taken during the vegetative stage. Significant differences were observed at 100 and 125 mg L-1 doses for root length and root dry mass. The highest Cu bioaccumulation in roots and shoots occurred at 125 mg L-1, while concentrations above this threshold showed toxicity to the early-maturing soybean cultivar. The Cu source applied at varying doses influenced only root development parameters—specifically root length and root dry mass—as well as Cu content accumulated in both roots and shoots during the vegetative growth stage.

References

Amorim, A. V., Lacerda, C. F., Marques, E. C., Ferreira, F. J., Júnior, R. J. C. S., Filho, F. L. A., & Gomes-Filho, E. Micronutrients affecting leaf biochemical responses during pineapple development. Theoretical and Experimental Plant Physiology, 25(1), 70-78. https://www.scielo.br/j/txpp/a/T5bhmtz9czCbgwP8t3B88MF/

Beulter, A. N., & Centurion, J. F. (2004). Compactação do solo no desenvolvimento radicular e na produtividade da soja. Pesquisa Agropecuária Brasileira, 39(6), 581-588. https://doi.org/10.1590/S0100-204X2004000600010

Crowe, S. A., Dossing, L. N., Beukes, N. J., Bau, M., Kruger, S. J., Frei, R., & Canfield, D. E. (2013). Atmospheric oxygenation three billion years ago. Nature, 501, 535-538. https://doi.org/10.1038/nature12426

Cruz, F. J. R., Ferreira, R. L. C., Conceição, S. S., Lima, E. U., Neto, C. F. O., Galvaão, J. R., Lopes, S. C., & Viegas, I. J. M. (2022). Copper toxicity in plants: nutritional, physiological, and biochemical aspects. Chapter Plant Response Mechanisms to Abiotic Stresses, 1-13 p.

EMBRAPA – Empresa brasileira de Pesquisa Agropecuária. (2011). Manual de métodos de análise de solo. 2ª Ed., Rio de Janeiro: EMBRAPA Solos, 230 p.

Fageria, N. K. (2001). Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an Oxisol. Communications in Soil Science and Plant Analysis, 32(9-10), 1659-1676. https://doi.org/10.1081/CSS-100104220

Fageria, N. K. (2007). Micronutrients’ influence on root growth of upland rice, common bean, corn, wheat, and soybean. Journal of Plant Nutrition, 25(3), 613-622. https://doi.org/10.1081/PLN-120003385

Ferreira, D. F. (2019). Sisvar: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450

Gomes, D. G., Lopes-Oliveira, P. J., Debiasi, T. V., Cunha, L. S., & Oliveira, H. C. (2021). Regression models to stratify the copper toxicity responses and tolerance mechanisms of Glycine max (L.) Merr. plants. Planta, 253. https://doi.org/10.1007/s00425-021-03573-9

Gonçalves, F. A. R., Xavier, F. O., Oliveira, T. F., Júnior, J. D. G., & Aquino, L. A. (2017). Aplicação foliar de doses e fontes de cobre e manganês nos teores foliares destes micronutrientes e na produtividade da soja. Cultura Agronômica, 26(3), 384-392. https://doi.org/10.32929/2446-8355.2017v26n3p384-392

Kulikova, A. L., Kuznetsova, N. A., & Kholodova, V. (2011). Effect of copper excess in environment on soybean root viability and morphology. Russian Journal of Plant Physiology, 58(5), 836-843. http://dx.doi.org/10.1134/S102144371105013X

Lequeux, H., Hermans, C., Lutts, S., & Verbruggen, N. (2010). Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48, 673-682. https://doi.org/10.1016/j.plaphy.2010.05.005

Lin, F., Chhapekar, S. S., Vieira, C. C., Silva, M. P., Rojas, A., Lee, D., Liu, N., Pardo, E. M., Lee, Y-C., Pinehiro, J. B., Ploper, L. D., Rupe, J., Chen, P., Wang, D., & Nguyen, H. T. (2022). Breeding for disease resistance in soybean: a global perspective. Theoretical and Applied Genetics, 135, 3773-3872. https://doi.org/10.1007/s00122-022-04101-3

Mataveli, L. R. V., Pohl, P., Mounicou, S., Arruda, M. A. Z., & Szpunar, J. (2010). A comparative study of element concentrations and binding in transgenic and non-transgenic soybean seeds. Metallomics, 2(12), 800-805. https://doi.org/10.1039/c0mt00040j

Puig, S., Andrés-Colás, N., García-Molina, A., & Peñarrubia, L. (2007). Copper and iron homeostasis in Arabidopsis: Responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environmental, 30, 271-290. https://doi.org/10.1111/j.1365-3040.2007.01642.x

Rai, M., Lngle, A. P., Pandit, R., Paralikar, P., Shende, S., Gupta, I., Biswas, J. K., & Silva, S. S. (2018). Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews, 7(4), 303-315. http://dx.doi.org/10.1515/ntrev-2018-0031

Sakai, T., & Kogiso, M. (2008). Soy isoflavones and immunity. Journal of Medical Investigation, 55(3-4), 167-173. https://doi.org/10.2152/jmi.55.167

Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93(6), 906-915. https://doi.org/10.1016/j.chemosphere.2013.05.044

Yuan, M., Wang, S., Chu, Z., Li, X., & Xu, C. (2010). The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. The Plant Cell, 22(9), 3164-3176. https://doi.org/10.1105/tpc.110.078022

Yusefi-Tanha, E., Fallah, S., Pokhrel, L. R., & Rostamnejadi, A. (2024). Role of particle size-dependent copper bioaccumulation-mediated oxidative stress on Glycine max (L.) yield parameters with soil-applied copper oxide nanoparticles. Environmental Science and Pollution Research, 31(20), 28905-28921. https://doi.org/10.1007/s11356-024-33070-x

Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L. R. (2020). Root system architecture, copper uptake and tissue distribution in soybean (Glycine max (L.) Merr.) grown in copper oxide nanoparticle (CuONP)-amended soil and implications for human nutrition. Plants, 9(10), 1326. https://doi.org/10.3390/plants9101326

Downloads

Published

2025-06-12

How to Cite

Castro, R. B. S., Ventura, M. V. A., Rocha, E. N. da, Castro, C. F. de S., & Menezes Filho, A. C. P. de. (2025). Influence of CuSO₄ application rates during the vegetative stage on agronomic characteristics of Glycine max (L.) Merrill . Brazilian Journal of Science, 4(7), 7–14. https://doi.org/10.14295/bjs.v4i7.758

Issue

Section

Agrarian and Biological Sciences