Silver nanoparticles as an antibacterial agent: a literature review

Authors

DOI:

https://doi.org/10.14295/bjs.v4i8.730

Keywords:

silver nanoparticle, antibacterial activity, mechanism of action, aggregation

Abstract

Growing bacterial resistance to antibiotics represents a serious threat to global health. In this context, silver nanoparticles (AgNPs) have emerged as promising alternatives due to their potent antimicrobial effect and ability to inhibit biofilm formation. This study aims to evaluate the potential of AgNPs as antibacterial agents through a theoretical analysis. A qualitative systematic review was conducted on silver nanoparticles, focusing on their antimicrobial properties, using inclusion and exclusion criteria to select 27 relevant articles from the BVS and PubMed databases. The antibacterial activity of AgNPs is influenced by factors such as size, shape and stability, and they are effective at disrupting bacterial membranes and biofilms via the release of silver ions and the generation of reactive oxygen species (ROS), as well as depending on controlled conditions to optimize their efficiency and avoid aggregation. The findings indicate that AgNPs represent a promising alternative in the fight against bacterial infections, contributing significantly to the advancement of research in this area.

References

Abrantes, J. A., Nogueira J. M. R. (2022). Biofilm and persister cells: from persistence to microbial resistance. Brazilian Journal of Clinical Analyses. Available in: https://www.rbac.org.br/artigos/biofilme-e-celulas-persisters-da-persistencia-a-resistencia-microbiana/#:~:text=Biofilme%20%C3%A9%20uma%20espessa%20camada,subst%C3%A2ncia%20polim%C3%A9rica%20extracelular%20(SPE).

Ahmad, J., Memon, A. G., Shaikh, A. A., Ismail, T., Giwa, A. S., & Mahmood, A. (2021). Insight into single-element nobel metal anisotropic silver nanoparticle shape-dependent selective ROS generation and quantification. RSC advances, 11(14), 8314-8322. https://doi.org/10.1039/D0RA10616J

Ahmed, H. A., El Bayomi, R. M., Hamed, R. I., Mohsen, R. A., El-Gohary, F. A., Hefny, A. A., ... & Tolba, H. M. (2022). Genetic relatedness, antibiotic resistance, and effect of silver nanoparticle on biofilm formation by Clostridium perfringens isolated from chickens, pigeons, camels, and human consumers. Veterinary sciences, 9(3), 109. https://doi.org/10.3390/vetsci9030109

Amna, Mahmood, T., Khan, U. N., Amin, B., Javed, M. T., Mehmood, S., ... & Chaudhary, H. J. (2021). Characterization of bio‐fabricated silver nanoparticles for distinct anti‐fungal activity against sugarcane phytopathogens. Microscopy Research and Technique, 84(7), 1522-1530. https://doi.org/10.1002/jemt.23708

Aydos, L. F. (2016). Micro-organismos marinhos como fonte de metabólitos bioativos: atividade contra biofilmes patogênicos. Lume UFRGS. Available in: https://lume.ufrgs.br/handle/10183/178246.

Badmus, J. A., Oyemomi, S. A., Adedosu, O. T., Yekeen, T. A., Azeez, M. A., Adebayo, E. A., ... & Marnewick, J. L. (2020). Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon, 6(11), e05413.

https://doi.org/10.1016/j.heliyon.2020.e05413

Barzan, G., Rocchetti, L., Portesi, C., Pellegrino, F., Taglietti, A., Rossi, A. M., & Giovannozzi, A. M. (2021). Surface Minimal Bactericidal Concentration: A comparative study of active glasses functionalized with different-sized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 204, 111800. https://doi.org/10.1016/j.colsurfb.2021.111800

Bélteky, P., Rónavári, A., Zakupszky, D., Boka, E., Igaz, N., Szerencsés, B., ... & Kónya, Z. (2021). Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. International journal of nanomedicine, 3021-3040. https://doi.org/10.2147/IJN.S304138

Bélteky, P., Rónavári, A., Igaz, N., Szerencsés, B., Tóth, I. Y., Pfeiffer, I., ... & Kónya, Z. (2019). Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. International journal of nanomedicine, 667-687. https://doi.org/10.2147/IJN.S185965

Bergamo, G., Demoliner, F., Timm, C. D., Carvalho, N. R., Helbig, E., & Gandra, E. A. (2020). Formação de biofilmes e resistência a antimicrobianos de isolados de Salmonella spp. Ciência Animal Brasileira, 21, e-48029. https://doi.org/10.1590/1809-6891v21e-48029

Buda, D. M., Bulzu, P. A., Barbu-Tudoran, L., Porfire, A., Pătraș, L., Sesărman, A., ... & Banciu, H. L. (2019). Physiological response to silver toxicity in the extremely halophilic archaeon Halomicrobium mukohataei. FEMS Microbiology Letters, 366(18), fnz231. https://doi.org/10.1093/femsle/fnz231

Chih, Y. K., You, J. L., Lin, W. H., Chang, Y. H., Tseng, C. C., & Ger, M. D. (2023). A novel method for the fabrication of antibacterial stainless steel with uniform silver dispersions by silver nanoparticle/polyethyleneimine composites. Materials, 16(10), 3719. https://doi.org/10.3390/ma16103719

Chopra, I. (2007). The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?. Journal of antimicrobial Chemotherapy, 59(4), 587-590. https://doi.org/10.1093/jac/dkm006

Dehkordi, N. H., Tajik, H., Moradi, M., Kousheh, S. A., & Molaei, R. (2019). Antibacterial interactions of colloid nanosilver with eugenol and food ingredients. Journal of Food Protection, 82(10), 1783-1792. https://doi.org/10.4315/0362-028X.JFP-19-174

Dhingra, K., Dinda, A. K., Kottarath, S. K., Chaudhari, P. K., & Verma, F. (2022). Mucoadhesive silver nanoparticle-based local drug delivery system for peri-implantitis management in COVID-19 era. Part 1: antimicrobial and safety in-vitro analysis. Journal of Oral Biology and Craniofacial Research, 12(1), 177-181. https://doi.org/10.1016/j.jobcr.2021.11.007

Durán, N., Rolim, W. R., Durán, M., Fávaro, W. J., & Seabra, A. B. (2019). Nanotoxicologia de nanopartículas de prata: toxicidade em animais e humanos. Química Nova, 42(2), 206-213. https://doi.org/10.21577/0100-4042.20170318

Embrapa (2009). Boletim de Pesquisa e Desenvolvimento. Concentração Mínima Inibitória (CMI) de antibióticos para oito estirpes de bactérias diazotróficas. Coleção de Culturas da Embrapa Agrobiologia. Available in: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/663940/3/bot049092013.pdf.

Estevez, M. B., Raffaelli, S., Mitchell, S. G., Faccio, R., & Alborés, S. (2020). Biofilm eradication using biogenic silver nanoparticles. Molecules, 25(9), 2023. https://doi.org/10.3390/molecules25092023

Ferreira, A. M., Vikulina, A., Cave, G. W., Loughlin, M., Puddu, V., & Volodkin, D. (2023). Vaterite vectors for the protection, storage and release of silver nanoparticles. Journal of Colloid and Interface Science, 631, 165-180. https://doi.org/10.1016/j.jcis.2022.10.094

Gnanakani, P. E., Santhanam, P., Premkumar, K., Kumar, K. E., & Dhanaraju, M. D. (2019). Nannochloropsis extract–mediated synthesis of biogenic silver nanoparticles, characterization and in vitro assessment of antimicrobial, antioxidant and cytotoxic activities. Asian Pacific Journal of Cancer Prevention: APJCP, 20(8), 2353. https://doi.org/10.31557/APJCP.2019.20.8.2353

Gil, A. C. (1999). Métodos e técnicas de pesquisa social. São Paulo, SP: Atlas, 5a ed.

Jeyaraman, M., Jeyaraman, N., Nallakumarasamy, A., Iyengar, K. P., Jain, V. K., Potty, A. G., & Gupta, A. (2023). Silver nanoparticle technology in orthopaedic infections. World Journal of Orthopedics, 14(9), 662. https://doi.org/10.5312/wjo.v14.i9.662

Jhumi, I. J., Arafat, T. A., Karmakar, P. C., Arifuzzaman, M., Hossain, M. S., Akhtar, N., & Asaduzzaman, S. M. (2023). Silver Nanoparticle Incorporated Human Amniotic Membrane Gel Accelerates Second‐Degree Burn Wound Healing in Wister Rat. Evidence‐Based Complementary and Alternative Medicine, 2023(1), 9808556.

https://doi.org/10.1155/2023/9808556

Kamradgi, S., Babanagare, S., & Gunagambhire, V. (2022). Characterization of Talaromyces islandicus–mediated silver nanoparticles and evaluation of their antibacterial and anticancer potential. Microscopy Research and Technique, 85(5), 1825-1836. https://doi.org/10.1002/jemt.24044

Kraker, M. E., Stewardson, A. J., & Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050?. PLoS medicine, 13(11), e1002184. https://doi.org/10.1371/journal.pmed.1002184

Kreutz, M., Kreutz, C., Kanzow, P., Tauböck, T. T., Burrer, P., Noll, C., ... & Rizk, M. (2022). Effect of bioactive and antimicrobial nanoparticles on properties and applicability of dental adhesives. Nanomaterials, 12(21), 3862. https://doi.org/10.3390/nano12213862

Lourenço, F. R., Kaneko, T. M., & Pinto, T. D. J. A. (2005). Estimativa da incerteza em ensaio de detecção de endotoxina bacteriana pelo método de gelificação. Revista Brasileira de Ciências Farmacêuticas, 41, 438-443. https://doi.org/10.1590/S1516-93322005000400005

Lyu, Y., Shi, Y., Zhu, S., Jia, Y., Tong, C., Liu, S., ... & Zhang, J. (2022). Three-Dimensional Reduced Graphene Oxide Hybrid Nano-Silver Scaffolds with High Antibacterial Properties. Sensors, 22(20), 7952. https://doi.org/10.3390/s22207952

Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2016). Microbiologia de Brock-14ª Edição. Artmed Editora.

Mateo, E. M., & Jiménez, M. (2022). Silver nanoparticle-based therapy: can it be useful to combat multi-drug resistant bacteria?. Antibiotics, 11(9), 1205. https://doi.org/10.3390/antibiotics11091205

Michailidu, J., Maťátková, O., Kolouchová, I., Masák, J., & Čejková, A. (2022). Silver nanoparticle production mediated by Vitis vinifera cane extract: Characterization and antibacterial activity evaluation. Plants, 11(3), 443. https://doi.org/10.3390/plants11030443

Menéndez Miranda, M., Liu, W., Godinez-Leon, J. A., Amanova, A., Houel-Renault, L., Lampre, I., ... & Gref, R. (2023). Colloidal silver nanoparticles obtained via radiolysis: Synthesis optimization and antibacterial properties. Pharmaceutics, 15(7), 1787. https://doi.org/10.3390/pharmaceutics15071787

Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Virulence mechanisms of bacterial pathogens, 481-511. https://doi.org/10.1128/9781555819286.ch17

Nqoro, X., & Taziwa, R. (2024). Polymer-based functional materials loaded with metal-based nanoparticles as potential scaffolds for the management of infected wounds. Pharmaceutics, 16(2), 155. https://doi.org/10.3390/pharmaceutics16020155

Panáček, D., Hochvaldová, L., Bakandritsos, A., Malina, T., Langer, M., Belza, J., ... & Zbořil, R. (2021). Silver covalently bound to cyanographene overcomes bacterial resistance to silver nanoparticles and antibiotics. Advanced Science, 8(12), 2003090. https://doi.org/10.1002/advs.202003090

Pandey, P., Meher, K., Falcao, B., Lopus, M., & Sirisha, V. L. (2023). Tryptone-stabilized silver nanoparticles’ potential to mitigate planktonic and biofilm growth forms of Serratia marcescens. JBIC Journal of Biological Inorganic Chemistry, 28(2), 139-152. https://doi.org/10.1007/s00775-022-01977-w

Pérez-Tanoira, R., Fernández-Arias, M., Potel, C., Carballo-Fernández, R., Pérez-Castro, S., Boutinguiza, M., ... & Pou, J. (2022). Silver nanoparticles produced by laser ablation and re-irradiation are effective preventing peri-implantitis multispecies biofilm formation. International Journal of Molecular Sciences, 23(19), 12027. https://doi.org/10.3390/ijms231912027

Petrilli, J. D. (2019). Resposta induzida pelo Mycobacterium tuberculosis com interrupção no operon mce1 e os lipídios da parede celular: uma análise para identificação de biomarcadores. Fundação Oswaldo Cruz. 130 p. Available in: https://www.arca.fiocruz.br/handle/icict/40177.

Pignataro, R. R. D. G. (2020). Atividade antimicrobiana de diferentes concentrações da prata coloidal aplicada em implantes dentários com plataforma do tipo hexágono externo: estudo in vitro. Repositório Institucional UNESP. Available in: https://repositorio.unesp.br/items/25f0f767-c130-4a4e-b8e7-121f9434bdec.

Quintero-Quiroz, C., Botero, L. E., Zárate-Triviño, D., Acevedo-Yepes, N., Escobar, J. S., Pérez, V. Z., & Cruz Riano, L. J. (2020). Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomaterials research, 24(1), 13. https://doi.org/10.1186/s40824-020-00191-6

Ragothaman, M., Villalan, A. K., Dhanasekaran, A., & Palanisamy, T. (2021). Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Materials Science and Engineering: C, 128, 112328. https://doi.org/10.1016/j.msec.2021.112328

Rónavári, A., Bélteky, P., Boka, E., Zakupszky, D., Igaz, N., Szerencsés, B., ... & Kiricsi, M. (2021). Polyvinyl-pyrrolidone-coated silver nanoparticles—the colloidal, chemical, and biological consequences of steric stabilization under biorelevant conditions. International Journal of Molecular Sciences, 22(16), 8673. https://doi.org/10.3390/ijms22168673

Sampaio, R. F., & Mancini, M. C. (2007). Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Brazilian journal of physical therapy, 11, 83-89. https://doi.org/10.1590/S1413-35552007000100013

Sanfelice, R. C., Pavinatto, A., Correa, D. S. (2022). Nanotecnologia aplicada a polímeros. São Paulo: Blucher, 1, 27-47. Available in: https://www.alice.cnptia.embrapa.br/alice/handle/doc/1148352.

Santos, N. D. Q. (2004). A resistência bacteriana no contexto da infecção hospitalar. Texto & Contexto-Enfermagem, 13, 64-70.

Shen, W., Zhang, L., Li, X., & Yu, H. Z. (2019). Binary silanization and silver nanoparticle encapsulation to create superhydrophobic cotton fabrics with antimicrobial capability. Scientific Reports, 9(1), 9172. https://doi.org/10.1038/s41598-019-45622-0

Siegel, J., Kaimlová, M., Vyhnálková, B., Trelin, A., Lyutakov, O., Slepička, P., ... & Hubáček, T. (2020). Optomechanical processing of silver colloids: New generation of nanoparticle–polymer composites with bactericidal effect. International journal of molecular sciences, 22(1), 312. https://doi.org/10.3390/ijms22010312

Soldera, P. de F. et al. (2021). O uso da prata na medicina: uma revisão integrativa da literatura. European Academic Research. 9. Available in: https://www.euacademic.org/UploadArticle/4971.pdf.

Souza, M. G. M., Batista, J. P., de Faria, E. H., Ciuffi, K. J., Rocha, L. A., Nassar, E. J., ... & Maia, I. A. (2022). Silver nanoparticle incorporation into flexible polyamide 12 membranes. Journal of Sol-Gel Science and Technology, 102(1), 219-228. https://doi.org/10.1007/s10971-021-05693-w

Tak, Y. K., Pal, S., Naoghare, P. K., Rangasamy, S., & Song, J. M. (2015). Shape-dependent skin penetration of silver nanoparticles: does it really matter?. Scientific reports, 5(1), 16908. https://doi.org/10.1038/srep16908

Teixeira, A. R., Figueiredo¹, A. F. C., França, R. F., & Federal, S. L. (2019). Resistência bacteriana relacionada ao uso indiscriminado de antibióticos. Revista Saúde em Foco, 11.

Thiurunavukkarau, R., Shanmugam, S., Subramanian, K., Pandi, P., Muralitharan, G., Arokiarajan, M., ... &

Shanmugam, V. (2022). Silver nanoparticles synthesized from the seaweed Sargassum polycystum and screening for their biological potential. Scientific Reports, 12(1), 14757. https://doi.org/10.1038/s41598-022-18379-2

Tiwari, A. K., Gupta, M. K., Narayan, R. J., & Pandey, P. C. (2023). A whole cell fluorescence quenching-based approach for the investigation of polyethyleneimine functionalized silver nanoparticles interaction with Candida albicans. Frontiers in Microbiology, 14, 1131122. http://doi.org/10.3389/fmicb.2023.1131122

Torky, H. A., Khaliel, S. A. E., Sedeek, E. K., Tawfik, R. G., Bkheet, A. A. E., Ebied, S. K., ... & Elghazaly, E. M. (2022). Silver nanoparticle effect on Salmonella enterica isolated from Northern West Egypt food, poultry, and calves. Applied Microbiology and Biotechnology, 106(17), 5701-5713. https://doi.org/10.1007/s00253-022-12102-x

Tortora, G. J., Funke, B. R., Case, C. L. (2016). Microbiologia. 12a ed. Porto Alegre: Artmed.

Trabulsi, L. R., Alterthum, F. (2015). Microbiologia. Atheneu. 6 ed, 920 p.

Turki, F., Ben Younes, R., Sakly, M., Ben Rhouma, K., Martinez-Guitarte, J. L., & Amara, S. (2022). Effect of silver nanoparticles on gene transcription of land snail Helix aspersa. Scientific Reports, 12(1), 2078. https://doi.org/10.1038/s41598-022-06090-1

Urodkova, E. K., Uryupina, O. G. Y., Tikhonov, V. E., Grammatikova, N. E., Bol’shakova, A. V., Sinelshchikova, A. A., ... & Senchikhin, I. N. (2023). Formation Kinetics and Antimicrobial Activity of Silver Nanoparticle Dispersions Based on N-Reacetylated Oligochitosan Solutions for Biomedical Applications. Pharmaceutics, 15(12), 2690. https://doi.org/10.3390/pharmaceutics15122690

Verma, S., Abirami, S., & Mahalakshmi, V. (2013). Anticancer and antibacterial activity of silver nanoparticles biosynthesized by Penicillium spp. and its synergistic effect with antibiotics. J. Microbiol. Biotechnol. Res, 3(3), 54-71.

Viana, A. V., Viana, D. D. S. F., de Figueirêdo, G. S., de Brito, J. E., Viana, V. G. F., & Junior, V. G. F. V. (2021). Potencial antimicrobiano das nanopartículas de prata estabilizadas em curcumina e extrato de folhas de cajueiro (Anacardium occidentale L.). Research, Society and Development, 10(9), e47610918364. https://doi.org/10.33448/rsd-v10i9.18364

Vidallon, M. L. P., & Teo, B. M. (2020). Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption. Chemical Communications, 56(90), 13907-13917. https://doi.org/10.1039/D0CC05880G

Viegas, M. de F. T. F. (2018). Avaliação da qualidade de revisões sistemáticas sobre toxicidade de nanopartículas de prata. ARCA. Fundação Oswaldo Cruz. Rio de Janeiro, Brasil. Available in: https://www.arca.fiocruz.br/handle/icict/62850. Access on: Sep 20, 2024.

Wahab, M. A., Luming, L., Matin, M. A., Karim, M. R., Aijaz, M. O., Alharbi, H. F., ... & Haque, R. (2021a). Silver micro-nanoparticle-based nanoarchitectures: synthesis routes, biomedical applications, and mechanisms of action. Polymers, 13(17), 2870. https://doi.org/10.3390/polym13172870

Wahab, M. A., Li, L., Li, H., & Abdala, A. (2021b). Silver nanoparticle-based nanocomposites for combating infectious pathogens: Recent advances and future prospects. Nanomaterials, 11(3), 581. https://doi.org/10.3390/nano11030581

Weng, W., Li, X., Nie, W., Liu, H., Liu, S., Huang, J., ... & Wang, D. (2020). One-step preparation of an AgNP-nHA@ RGO three-dimensional porous scaffold and its application in infected bone defect treatment. International journal of nanomedicine, 5027-5042.

Yang, J., Huang, Y., Dai, J., Shi, X., & Zheng, Y. (2021). A sandwich structure composite wound dressing with firmly anchored silver nanoparticles for severe burn wound healing in a porcine model. Regenerative Biomaterials, 8(5), rbab037. https://doi.org/10.1093/rb/rbab037

Downloads

Published

2025-06-20

How to Cite

Baranhiuki, D. S., Fernandes, T. de L., Bodnar, G. C., & Navarro, S. D. (2025). Silver nanoparticles as an antibacterial agent: a literature review. Brazilian Journal of Science, 4(8), 35–56. https://doi.org/10.14295/bjs.v4i8.730