Silver nanoparticles as an antibacterial agent: a literature review
DOI:
https://doi.org/10.14295/bjs.v4i8.730Keywords:
silver nanoparticle, antibacterial activity, mechanism of action, aggregationAbstract
Growing bacterial resistance to antibiotics represents a serious threat to global health. In this context, silver nanoparticles (AgNPs) have emerged as promising alternatives due to their potent antimicrobial effect and ability to inhibit biofilm formation. This study aims to evaluate the potential of AgNPs as antibacterial agents through a theoretical analysis. A qualitative systematic review was conducted on silver nanoparticles, focusing on their antimicrobial properties, using inclusion and exclusion criteria to select 27 relevant articles from the BVS and PubMed databases. The antibacterial activity of AgNPs is influenced by factors such as size, shape and stability, and they are effective at disrupting bacterial membranes and biofilms via the release of silver ions and the generation of reactive oxygen species (ROS), as well as depending on controlled conditions to optimize their efficiency and avoid aggregation. The findings indicate that AgNPs represent a promising alternative in the fight against bacterial infections, contributing significantly to the advancement of research in this area.
References
Abrantes, J. A., Nogueira J. M. R. (2022). Biofilm and persister cells: from persistence to microbial resistance. Brazilian Journal of Clinical Analyses. Available in: https://www.rbac.org.br/artigos/biofilme-e-celulas-persisters-da-persistencia-a-resistencia-microbiana/#:~:text=Biofilme%20%C3%A9%20uma%20espessa%20camada,subst%C3%A2ncia%20polim%C3%A9rica%20extracelular%20(SPE).
Ahmad, J., Memon, A. G., Shaikh, A. A., Ismail, T., Giwa, A. S., & Mahmood, A. (2021). Insight into single-element nobel metal anisotropic silver nanoparticle shape-dependent selective ROS generation and quantification. RSC advances, 11(14), 8314-8322. https://doi.org/10.1039/D0RA10616J
Ahmed, H. A., El Bayomi, R. M., Hamed, R. I., Mohsen, R. A., El-Gohary, F. A., Hefny, A. A., ... & Tolba, H. M. (2022). Genetic relatedness, antibiotic resistance, and effect of silver nanoparticle on biofilm formation by Clostridium perfringens isolated from chickens, pigeons, camels, and human consumers. Veterinary sciences, 9(3), 109. https://doi.org/10.3390/vetsci9030109
Amna, Mahmood, T., Khan, U. N., Amin, B., Javed, M. T., Mehmood, S., ... & Chaudhary, H. J. (2021). Characterization of bio‐fabricated silver nanoparticles for distinct anti‐fungal activity against sugarcane phytopathogens. Microscopy Research and Technique, 84(7), 1522-1530. https://doi.org/10.1002/jemt.23708
Aydos, L. F. (2016). Micro-organismos marinhos como fonte de metabólitos bioativos: atividade contra biofilmes patogênicos. Lume UFRGS. Available in: https://lume.ufrgs.br/handle/10183/178246.
Badmus, J. A., Oyemomi, S. A., Adedosu, O. T., Yekeen, T. A., Azeez, M. A., Adebayo, E. A., ... & Marnewick, J. L. (2020). Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon, 6(11), e05413.
https://doi.org/10.1016/j.heliyon.2020.e05413
Barzan, G., Rocchetti, L., Portesi, C., Pellegrino, F., Taglietti, A., Rossi, A. M., & Giovannozzi, A. M. (2021). Surface Minimal Bactericidal Concentration: A comparative study of active glasses functionalized with different-sized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 204, 111800. https://doi.org/10.1016/j.colsurfb.2021.111800
Bélteky, P., Rónavári, A., Zakupszky, D., Boka, E., Igaz, N., Szerencsés, B., ... & Kónya, Z. (2021). Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. International journal of nanomedicine, 3021-3040. https://doi.org/10.2147/IJN.S304138
Bélteky, P., Rónavári, A., Igaz, N., Szerencsés, B., Tóth, I. Y., Pfeiffer, I., ... & Kónya, Z. (2019). Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. International journal of nanomedicine, 667-687. https://doi.org/10.2147/IJN.S185965
Bergamo, G., Demoliner, F., Timm, C. D., Carvalho, N. R., Helbig, E., & Gandra, E. A. (2020). Formação de biofilmes e resistência a antimicrobianos de isolados de Salmonella spp. Ciência Animal Brasileira, 21, e-48029. https://doi.org/10.1590/1809-6891v21e-48029
Buda, D. M., Bulzu, P. A., Barbu-Tudoran, L., Porfire, A., Pătraș, L., Sesărman, A., ... & Banciu, H. L. (2019). Physiological response to silver toxicity in the extremely halophilic archaeon Halomicrobium mukohataei. FEMS Microbiology Letters, 366(18), fnz231. https://doi.org/10.1093/femsle/fnz231
Chih, Y. K., You, J. L., Lin, W. H., Chang, Y. H., Tseng, C. C., & Ger, M. D. (2023). A novel method for the fabrication of antibacterial stainless steel with uniform silver dispersions by silver nanoparticle/polyethyleneimine composites. Materials, 16(10), 3719. https://doi.org/10.3390/ma16103719
Chopra, I. (2007). The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?. Journal of antimicrobial Chemotherapy, 59(4), 587-590. https://doi.org/10.1093/jac/dkm006
Dehkordi, N. H., Tajik, H., Moradi, M., Kousheh, S. A., & Molaei, R. (2019). Antibacterial interactions of colloid nanosilver with eugenol and food ingredients. Journal of Food Protection, 82(10), 1783-1792. https://doi.org/10.4315/0362-028X.JFP-19-174
Dhingra, K., Dinda, A. K., Kottarath, S. K., Chaudhari, P. K., & Verma, F. (2022). Mucoadhesive silver nanoparticle-based local drug delivery system for peri-implantitis management in COVID-19 era. Part 1: antimicrobial and safety in-vitro analysis. Journal of Oral Biology and Craniofacial Research, 12(1), 177-181. https://doi.org/10.1016/j.jobcr.2021.11.007
Durán, N., Rolim, W. R., Durán, M., Fávaro, W. J., & Seabra, A. B. (2019). Nanotoxicologia de nanopartículas de prata: toxicidade em animais e humanos. Química Nova, 42(2), 206-213. https://doi.org/10.21577/0100-4042.20170318
Embrapa (2009). Boletim de Pesquisa e Desenvolvimento. Concentração Mínima Inibitória (CMI) de antibióticos para oito estirpes de bactérias diazotróficas. Coleção de Culturas da Embrapa Agrobiologia. Available in: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/663940/3/bot049092013.pdf.
Estevez, M. B., Raffaelli, S., Mitchell, S. G., Faccio, R., & Alborés, S. (2020). Biofilm eradication using biogenic silver nanoparticles. Molecules, 25(9), 2023. https://doi.org/10.3390/molecules25092023
Ferreira, A. M., Vikulina, A., Cave, G. W., Loughlin, M., Puddu, V., & Volodkin, D. (2023). Vaterite vectors for the protection, storage and release of silver nanoparticles. Journal of Colloid and Interface Science, 631, 165-180. https://doi.org/10.1016/j.jcis.2022.10.094
Gnanakani, P. E., Santhanam, P., Premkumar, K., Kumar, K. E., & Dhanaraju, M. D. (2019). Nannochloropsis extract–mediated synthesis of biogenic silver nanoparticles, characterization and in vitro assessment of antimicrobial, antioxidant and cytotoxic activities. Asian Pacific Journal of Cancer Prevention: APJCP, 20(8), 2353. https://doi.org/10.31557/APJCP.2019.20.8.2353
Gil, A. C. (1999). Métodos e técnicas de pesquisa social. São Paulo, SP: Atlas, 5a ed.
Jeyaraman, M., Jeyaraman, N., Nallakumarasamy, A., Iyengar, K. P., Jain, V. K., Potty, A. G., & Gupta, A. (2023). Silver nanoparticle technology in orthopaedic infections. World Journal of Orthopedics, 14(9), 662. https://doi.org/10.5312/wjo.v14.i9.662
Jhumi, I. J., Arafat, T. A., Karmakar, P. C., Arifuzzaman, M., Hossain, M. S., Akhtar, N., & Asaduzzaman, S. M. (2023). Silver Nanoparticle Incorporated Human Amniotic Membrane Gel Accelerates Second‐Degree Burn Wound Healing in Wister Rat. Evidence‐Based Complementary and Alternative Medicine, 2023(1), 9808556.
https://doi.org/10.1155/2023/9808556
Kamradgi, S., Babanagare, S., & Gunagambhire, V. (2022). Characterization of Talaromyces islandicus–mediated silver nanoparticles and evaluation of their antibacterial and anticancer potential. Microscopy Research and Technique, 85(5), 1825-1836. https://doi.org/10.1002/jemt.24044
Kraker, M. E., Stewardson, A. J., & Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050?. PLoS medicine, 13(11), e1002184. https://doi.org/10.1371/journal.pmed.1002184
Kreutz, M., Kreutz, C., Kanzow, P., Tauböck, T. T., Burrer, P., Noll, C., ... & Rizk, M. (2022). Effect of bioactive and antimicrobial nanoparticles on properties and applicability of dental adhesives. Nanomaterials, 12(21), 3862. https://doi.org/10.3390/nano12213862
Lourenço, F. R., Kaneko, T. M., & Pinto, T. D. J. A. (2005). Estimativa da incerteza em ensaio de detecção de endotoxina bacteriana pelo método de gelificação. Revista Brasileira de Ciências Farmacêuticas, 41, 438-443. https://doi.org/10.1590/S1516-93322005000400005
Lyu, Y., Shi, Y., Zhu, S., Jia, Y., Tong, C., Liu, S., ... & Zhang, J. (2022). Three-Dimensional Reduced Graphene Oxide Hybrid Nano-Silver Scaffolds with High Antibacterial Properties. Sensors, 22(20), 7952. https://doi.org/10.3390/s22207952
Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2016). Microbiologia de Brock-14ª Edição. Artmed Editora.
Mateo, E. M., & Jiménez, M. (2022). Silver nanoparticle-based therapy: can it be useful to combat multi-drug resistant bacteria?. Antibiotics, 11(9), 1205. https://doi.org/10.3390/antibiotics11091205
Michailidu, J., Maťátková, O., Kolouchová, I., Masák, J., & Čejková, A. (2022). Silver nanoparticle production mediated by Vitis vinifera cane extract: Characterization and antibacterial activity evaluation. Plants, 11(3), 443. https://doi.org/10.3390/plants11030443
Menéndez Miranda, M., Liu, W., Godinez-Leon, J. A., Amanova, A., Houel-Renault, L., Lampre, I., ... & Gref, R. (2023). Colloidal silver nanoparticles obtained via radiolysis: Synthesis optimization and antibacterial properties. Pharmaceutics, 15(7), 1787. https://doi.org/10.3390/pharmaceutics15071787
Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Virulence mechanisms of bacterial pathogens, 481-511. https://doi.org/10.1128/9781555819286.ch17
Nqoro, X., & Taziwa, R. (2024). Polymer-based functional materials loaded with metal-based nanoparticles as potential scaffolds for the management of infected wounds. Pharmaceutics, 16(2), 155. https://doi.org/10.3390/pharmaceutics16020155
Panáček, D., Hochvaldová, L., Bakandritsos, A., Malina, T., Langer, M., Belza, J., ... & Zbořil, R. (2021). Silver covalently bound to cyanographene overcomes bacterial resistance to silver nanoparticles and antibiotics. Advanced Science, 8(12), 2003090. https://doi.org/10.1002/advs.202003090
Pandey, P., Meher, K., Falcao, B., Lopus, M., & Sirisha, V. L. (2023). Tryptone-stabilized silver nanoparticles’ potential to mitigate planktonic and biofilm growth forms of Serratia marcescens. JBIC Journal of Biological Inorganic Chemistry, 28(2), 139-152. https://doi.org/10.1007/s00775-022-01977-w
Pérez-Tanoira, R., Fernández-Arias, M., Potel, C., Carballo-Fernández, R., Pérez-Castro, S., Boutinguiza, M., ... & Pou, J. (2022). Silver nanoparticles produced by laser ablation and re-irradiation are effective preventing peri-implantitis multispecies biofilm formation. International Journal of Molecular Sciences, 23(19), 12027. https://doi.org/10.3390/ijms231912027
Petrilli, J. D. (2019). Resposta induzida pelo Mycobacterium tuberculosis com interrupção no operon mce1 e os lipídios da parede celular: uma análise para identificação de biomarcadores. Fundação Oswaldo Cruz. 130 p. Available in: https://www.arca.fiocruz.br/handle/icict/40177.
Pignataro, R. R. D. G. (2020). Atividade antimicrobiana de diferentes concentrações da prata coloidal aplicada em implantes dentários com plataforma do tipo hexágono externo: estudo in vitro. Repositório Institucional UNESP. Available in: https://repositorio.unesp.br/items/25f0f767-c130-4a4e-b8e7-121f9434bdec.
Quintero-Quiroz, C., Botero, L. E., Zárate-Triviño, D., Acevedo-Yepes, N., Escobar, J. S., Pérez, V. Z., & Cruz Riano, L. J. (2020). Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomaterials research, 24(1), 13. https://doi.org/10.1186/s40824-020-00191-6
Ragothaman, M., Villalan, A. K., Dhanasekaran, A., & Palanisamy, T. (2021). Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Materials Science and Engineering: C, 128, 112328. https://doi.org/10.1016/j.msec.2021.112328
Rónavári, A., Bélteky, P., Boka, E., Zakupszky, D., Igaz, N., Szerencsés, B., ... & Kiricsi, M. (2021). Polyvinyl-pyrrolidone-coated silver nanoparticles—the colloidal, chemical, and biological consequences of steric stabilization under biorelevant conditions. International Journal of Molecular Sciences, 22(16), 8673. https://doi.org/10.3390/ijms22168673
Sampaio, R. F., & Mancini, M. C. (2007). Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Brazilian journal of physical therapy, 11, 83-89. https://doi.org/10.1590/S1413-35552007000100013
Sanfelice, R. C., Pavinatto, A., Correa, D. S. (2022). Nanotecnologia aplicada a polímeros. São Paulo: Blucher, 1, 27-47. Available in: https://www.alice.cnptia.embrapa.br/alice/handle/doc/1148352.
Santos, N. D. Q. (2004). A resistência bacteriana no contexto da infecção hospitalar. Texto & Contexto-Enfermagem, 13, 64-70.
Shen, W., Zhang, L., Li, X., & Yu, H. Z. (2019). Binary silanization and silver nanoparticle encapsulation to create superhydrophobic cotton fabrics with antimicrobial capability. Scientific Reports, 9(1), 9172. https://doi.org/10.1038/s41598-019-45622-0
Siegel, J., Kaimlová, M., Vyhnálková, B., Trelin, A., Lyutakov, O., Slepička, P., ... & Hubáček, T. (2020). Optomechanical processing of silver colloids: New generation of nanoparticle–polymer composites with bactericidal effect. International journal of molecular sciences, 22(1), 312. https://doi.org/10.3390/ijms22010312
Soldera, P. de F. et al. (2021). O uso da prata na medicina: uma revisão integrativa da literatura. European Academic Research. 9. Available in: https://www.euacademic.org/UploadArticle/4971.pdf.
Souza, M. G. M., Batista, J. P., de Faria, E. H., Ciuffi, K. J., Rocha, L. A., Nassar, E. J., ... & Maia, I. A. (2022). Silver nanoparticle incorporation into flexible polyamide 12 membranes. Journal of Sol-Gel Science and Technology, 102(1), 219-228. https://doi.org/10.1007/s10971-021-05693-w
Tak, Y. K., Pal, S., Naoghare, P. K., Rangasamy, S., & Song, J. M. (2015). Shape-dependent skin penetration of silver nanoparticles: does it really matter?. Scientific reports, 5(1), 16908. https://doi.org/10.1038/srep16908
Teixeira, A. R., Figueiredo¹, A. F. C., França, R. F., & Federal, S. L. (2019). Resistência bacteriana relacionada ao uso indiscriminado de antibióticos. Revista Saúde em Foco, 11.
Thiurunavukkarau, R., Shanmugam, S., Subramanian, K., Pandi, P., Muralitharan, G., Arokiarajan, M., ... &
Shanmugam, V. (2022). Silver nanoparticles synthesized from the seaweed Sargassum polycystum and screening for their biological potential. Scientific Reports, 12(1), 14757. https://doi.org/10.1038/s41598-022-18379-2
Tiwari, A. K., Gupta, M. K., Narayan, R. J., & Pandey, P. C. (2023). A whole cell fluorescence quenching-based approach for the investigation of polyethyleneimine functionalized silver nanoparticles interaction with Candida albicans. Frontiers in Microbiology, 14, 1131122. http://doi.org/10.3389/fmicb.2023.1131122
Torky, H. A., Khaliel, S. A. E., Sedeek, E. K., Tawfik, R. G., Bkheet, A. A. E., Ebied, S. K., ... & Elghazaly, E. M. (2022). Silver nanoparticle effect on Salmonella enterica isolated from Northern West Egypt food, poultry, and calves. Applied Microbiology and Biotechnology, 106(17), 5701-5713. https://doi.org/10.1007/s00253-022-12102-x
Tortora, G. J., Funke, B. R., Case, C. L. (2016). Microbiologia. 12a ed. Porto Alegre: Artmed.
Trabulsi, L. R., Alterthum, F. (2015). Microbiologia. Atheneu. 6 ed, 920 p.
Turki, F., Ben Younes, R., Sakly, M., Ben Rhouma, K., Martinez-Guitarte, J. L., & Amara, S. (2022). Effect of silver nanoparticles on gene transcription of land snail Helix aspersa. Scientific Reports, 12(1), 2078. https://doi.org/10.1038/s41598-022-06090-1
Urodkova, E. K., Uryupina, O. G. Y., Tikhonov, V. E., Grammatikova, N. E., Bol’shakova, A. V., Sinelshchikova, A. A., ... & Senchikhin, I. N. (2023). Formation Kinetics and Antimicrobial Activity of Silver Nanoparticle Dispersions Based on N-Reacetylated Oligochitosan Solutions for Biomedical Applications. Pharmaceutics, 15(12), 2690. https://doi.org/10.3390/pharmaceutics15122690
Verma, S., Abirami, S., & Mahalakshmi, V. (2013). Anticancer and antibacterial activity of silver nanoparticles biosynthesized by Penicillium spp. and its synergistic effect with antibiotics. J. Microbiol. Biotechnol. Res, 3(3), 54-71.
Viana, A. V., Viana, D. D. S. F., de Figueirêdo, G. S., de Brito, J. E., Viana, V. G. F., & Junior, V. G. F. V. (2021). Potencial antimicrobiano das nanopartículas de prata estabilizadas em curcumina e extrato de folhas de cajueiro (Anacardium occidentale L.). Research, Society and Development, 10(9), e47610918364. https://doi.org/10.33448/rsd-v10i9.18364
Vidallon, M. L. P., & Teo, B. M. (2020). Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption. Chemical Communications, 56(90), 13907-13917. https://doi.org/10.1039/D0CC05880G
Viegas, M. de F. T. F. (2018). Avaliação da qualidade de revisões sistemáticas sobre toxicidade de nanopartículas de prata. ARCA. Fundação Oswaldo Cruz. Rio de Janeiro, Brasil. Available in: https://www.arca.fiocruz.br/handle/icict/62850. Access on: Sep 20, 2024.
Wahab, M. A., Luming, L., Matin, M. A., Karim, M. R., Aijaz, M. O., Alharbi, H. F., ... & Haque, R. (2021a). Silver micro-nanoparticle-based nanoarchitectures: synthesis routes, biomedical applications, and mechanisms of action. Polymers, 13(17), 2870. https://doi.org/10.3390/polym13172870
Wahab, M. A., Li, L., Li, H., & Abdala, A. (2021b). Silver nanoparticle-based nanocomposites for combating infectious pathogens: Recent advances and future prospects. Nanomaterials, 11(3), 581. https://doi.org/10.3390/nano11030581
Weng, W., Li, X., Nie, W., Liu, H., Liu, S., Huang, J., ... & Wang, D. (2020). One-step preparation of an AgNP-nHA@ RGO three-dimensional porous scaffold and its application in infected bone defect treatment. International journal of nanomedicine, 5027-5042.
Yang, J., Huang, Y., Dai, J., Shi, X., & Zheng, Y. (2021). A sandwich structure composite wound dressing with firmly anchored silver nanoparticles for severe burn wound healing in a porcine model. Regenerative Biomaterials, 8(5), rbab037. https://doi.org/10.1093/rb/rbab037

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Débora Soares Baranhiuki, Thalyta de Lima Fernandes, Giovana Carolina Bodnar, Stephanie Dynczuki Navarro

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.