Effect of animal manure on population dynamics of indigenous soil Bacillus spp.

Authors

DOI:

https://doi.org/10.14295/bjs.v3i9.628

Keywords:

Bacillus, growth media, biofertilizer, soil fertility

Abstract

Bacillus spp. are soil inhabitants, many of which play vital roles as biofertilizers and biopesticides in plant production. These bacteria derive their nourishment from soil organic carbon and nitrogen provided by organic matter. Reports indicate that animal manure increases the population and diversity of Bacillus spp. in the soil.  However, there is limited information on which of the three commonly used animal manure (cattle, goat, and chicken) is more effective in multiplying Bacillus cells. This study evaluated the effectiveness of cattle, goat, and chicken manures, standard nutrient broth, and soil, as growth media, on the multiplication of 22 indigenous soil Bacillus spp. strains previously isolated from the cabbage rhizosphere. A Completely Randomized Design with five treatments replicated three times was used and the conditions were kept at room temperature. Both standard nutrient broth and sterilized soil media were used as controls. Colony-forming unit counts of Bacillus spp. were subjected to Log (x+1) transformation. One-way analysis of variance was used to generate mean differences and means separated using Duncan’s LSD test (p = 0.05). Linear curves were drawn to compare the growth trends for each Bacillus strain. The findings indicate that the growth of Bacillus spp. strains in animal manure were significantly higher than in the soil media. Growth in the soil media was significantly lower than in standard nutrient broth media growth. Results further show that the growth of the Bacillus spp. in all the media followed the normal growth curve of bacterial cells. Results from this study, therefore, suggest that amendment of soil with cattle, goat, and chicken manures enhances the growth and multiplication of soil Bacillus spp. and this has a positive effect on soil fertility. These manures can also be used in the commercial production of the bacillus bacteria as a biofertilizer and biopesticide. Biofertilizers are cheap, have long-term effects on soil fertility, and are health-friendly to the environment and the user.

References

Alexandre, C., Babey, T., Rapaport, A., Gonod, L. V., Garnier, P., Nunan, N., & Dreyzy, J-R. (2022). Competition within low-density bacterial populations as an unexpected factor regulating carbon decomposition in bulk soil. Soil Biology & Biochemistry, 164, 108423. https://doi.org/10.1016/j.soilbio.2021.108423 DOI: https://doi.org/10.1016/j.soilbio.2021.108423

Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348, 6235. https://doi.org/10.1126/science.1261071 DOI: https://doi.org/10.1126/science.1261071

Banerjee, M. R., Yesmin, L., & Vessey, J. K. (2006). Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. In: Handbook of Microbial Biofertilizers, Food Products Press, New York, NY, USA, 137-181 p.

Bebber, D. P., & Richards, V. R. (2022). A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Applied Soil Ecology, 175, 104450. https://doi.org/10.1016/j.apsoil.2022.104450 DOI: https://doi.org/10.1016/j.apsoil.2022.104450

Bhattacharyya, P. N. & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327-1350. https://doi.org/10.1007/s11274-011-0979-9 DOI: https://doi.org/10.1007/s11274-011-0979-9

Billings, S. A., Lajtha, K., Malhotra, A., Berhe, A. A., Graaff, M. -A., Earl, S., Fraterrigo, J., Georgiou, K., Grandy, S., Hobbie, S. E., Moore, J. A. M., Nadelhoffer, K., Pierson, D., Rasmussen, C., Silver, W. L., Sulman, B. N., Weintraub, S., & Wieder, W. (2021). Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners. Ecological Applications, 31(3), e02290. https://doi.org/10.1002/eap.2290 DOI: https://doi.org/10.1002/eap.2290

Boyoucos, G. J. (1962). Hydrometer methods improved for making particle size analysis of soils. Agronomy Journal, 54(5), 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x DOI: https://doi.org/10.2134/agronj1962.00021962005400050028x

Buddhika, A. Athauda A. A. T. R., Seneviratne, G., Kulasooriya S. A., & Abayasekara, C. ( 2013). Emergence of diverse microbes on application of biofilmed biofertilizers to a maize growing soil. Ceylon Journal of Science. https://doi.org/10.4038/CJSBS.V42I2.6612 DOI: https://doi.org/10.4038/cjsbs.v42i2.6612

Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Reviews of Plant Biology, 64, 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106 DOI: https://doi.org/10.1146/annurev-arplant-050312-120106

Bulgarelli, D., Garrido-Oter, R., Munch, P. C., Weiman, A., Droge, J., Pan, Y., McHardy, A. C., & Schulze-Lefert, P. (2015). Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host & Microbe, 17(3), 392-403. https://doi.org/10.1016/j.chom.2015.01.011 DOI: https://doi.org/10.1016/j.chom.2015.01.011

Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P., &Nautiyal, C. (2012). Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology, 64(2), 450-460. https://doi.org/10.1007/s00248-012-0025-y DOI: https://doi.org/10.1007/s00248-012-0025-y

Chen, C., Zhang, J. N., Lu, M., Qin, C., Chen, Y. H., Yang, L., Huang, Q. W., Wang, J. C., Shen, Z. G., & Shen, Q. R. (2016) Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biology and Fertility of Soils, 52, 455-467. https://doi.org/10.1007/s00374-016-1089-5 DOI: https://doi.org/10.1007/s00374-016-1089-5

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Muller, N. D., O’Connel, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J.,

Siebert, S., Tilman, D., 7 Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337-342. https://doi.org/10.1038/nature10452 DOI: https://doi.org/10.1038/nature10452

Gadhave, K. R., Devlin, P. F., Ebertz, A. et al. (2018). Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microbial Ecology, 76, 741-750. https://doi.org/10.1007/s00248-018-1160-x DOI: https://doi.org/10.1007/s00248-018-1160-x

Gai, X., Liu, H., Liu, J., Zhai, L., Yang, B., Wu, S., Ren, T., Lei, Q., & Wang, H. (2018). Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China plain. Agricultural Water Management, 208, 384-392. https://doi.org/10.1016/j.agwat.2018.07.002 DOI: https://doi.org/10.1016/j.agwat.2018.07.002

Ge, Y., Zhang, J. B, Zhang, L. M., Yang, M., & He, J-Z. (2008). Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. Journal of Soil and Sediments, 8, 43-50. https://doi.org/10.1065/jss2008.01.270 DOI: https://doi.org/10.1065/jss2008.01.270

Gessesse, T. A., & Khamzina, A. (2018). How reliable is the Walkley-Black method for analyzing carbon-poor, semi-arid soils in Ethiopia? Journal of Arid Environments, 153, 98-101. https://doi.org/10.1016/j.jaridenv.2018.01.008 DOI: https://doi.org/10.1016/j.jaridenv.2018.01.008

Gomez, E., Ferreras, L., & Toresani, S. (2006). Soil bacterial functional diversity as influenced by organic amendment application. Bioresource Technology, 97(13), 1484-1489. https://doi.org/10.1016/j.biortech.2005.06.021 DOI: https://doi.org/10.1016/j.biortech.2005.06.021

Haq, H. U., Li, Y., Jin, L., Zhang, T., Cheng, L., Li, Z., & Tian, B. (2021). Effect of chicken manure-based fertiliser on bacterial communities and diversity of tomato endosphere microbiota. Agriculture (Poľnohospodárstvo), 67(3), 144-154. https://doi.org/10.2478/agri-2021-0013 DOI: https://doi.org/10.2478/agri-2021-0013

He, Y. T., Zhang, W. J., Xu, M. G., Tong, X. G., Sun, F. X., Wang, J. Z., Huang, S. M., Zhu, P., & He, X. H. (2015). Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Science of The Total Environmental, 532, 635-644. https://doi.org/10.1016/j.scitotenv.2015.06.011 DOI: https://doi.org/10.1016/j.scitotenv.2015.06.011

Hindersah, R., Setiawati, M. R., Fitriatin, B. N., Suryatmana, P., & Asmiran, P. (2019). Chemical characteristics of organic-based liquid inoculant of Bacillus spp. In: IOP Conference Series: Earth and Environmental Science, 393, 012005. https://doi.org/10.1088/1755-1315/393/1/012005 DOI: https://doi.org/10.1088/1755-1315/393/1/012005

Irshad, M., Eneji, A. E, Hussain, Z. and Ashraf, M. (2013). Chemical characterization of fresh and composted livestock manures. Journal of Soil Science and Plant Nutrition 13(1), 115-121. http://dx.doi.org/10.4067/S0718-95162013005000011 DOI: https://doi.org/10.4067/S0718-95162013005000011

Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderlin, J. S., Reeves, J. H., Jenkins, M. B., Endale, D. M., Coleman, D. C., & Whitman, W. B. (2008). Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology & Biochemistry, 40(11), 2843-2853. https://doi.org/10.1016/j.soilbio.2008.07.030 DOI: https://doi.org/10.1016/j.soilbio.2008.07.030

Jechalke, S., Focks, A., Rosendahl, I., Groeneweg, J., Siemens, J., Heuer, H., & Smalla, K. (2014). Structural and functional response of the soil microbial community to application of manure from difloxacin-treated pigs. FEMS Microbiology Ecology, 87(1), 78-88. https://doi.org/10.1111/1574-6941.12191 DOI: https://doi.org/10.1111/1574-6941.12191

Lavudi, H. N., Jakinala, P., Kumar, J. S., Babu, B. N., Srinivas, M., & Katika, M. R. (2023). Plant growth promoting rhizobacteria (PGPR): An overview for sustainable agriculture and development. In: Rhizobiome. Parray, J. A., Shameem, N., Egamberdieva, D., & Sayyed, R. Z., Eds., Academic Press: Waltham, MA, USA, 95-125 p. DOI: https://doi.org/10.1016/B978-0-443-16030-1.00017-1

Lazcano, C., Zhu-Barker, X.; Decock, C. (2019). Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms, 9(5), 983. https://doi.org/10.3390/microorganisms 9050983 DOI: https://doi.org/10.3390/microorganisms9050983

Liina, E., Malle, J., Merrit, N., Enn, L., Ando, A. & Elina, A. (2012). The importance of solid cattle manure application on soil microorganisms in organic and conventional cultivation. Acta Agriculturae Scandinavica, Section B- Soil & Plant Science, 62(7), 583-594. https://doi.org/10.1080/09064710.2012.678380 DOI: https://doi.org/10.1080/09064710.2012.678380

Li, Y., Li, Z., Li, Z., Jiang, Y., Weng, B., & Lin, W. (2015). Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. Journal of Applied Microbiology, 121(3), 787-799. https://doi.org/10.1111/jam.13225 DOI: https://doi.org/10.1111/jam.13225

Ling, N., Zhu, C., Xue, C., Chen, H., Duan, Y., Peng, C., Guo, S., & Shen, Q. (2016). Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology and Biochemistry, 99, 137-149. https://doi.org/10.1016/j.soilbio.2016.05.005 DOI: https://doi.org/10.1016/j.soilbio.2016.05.005

Manching, H. C., Balint-Kurti, P. J., & Stapleton, A. E. (2014). Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Frontiers in Plant Science, 5, 403. https://doi.org/10.3389/fpls.2014.00403 DOI: https://doi.org/10.3389/fpls.2014.00403

Montesinos, E. (2003). Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology, 6, 245-252. https://doi.org/10.1007/s10123-003-0144-x DOI: https://doi.org/10.1007/s10123-003-0144-x

Morris, K. A., Richter, A., Migliavacca, M., & Schrumpf, M. (2022). Growth of soil microbes is not limited by the availability of nitrogen and phosphorus in a Mediterranean oak-savanna. Soil Biology & Biochemistry, 169, 108680. https://doi.org/10.1016/j.soilbio.2022.108680 DOI: https://doi.org/10.1016/j.soilbio.2022.108680

Murphy, J., & Riley, I. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5 DOI: https://doi.org/10.1016/S0003-2670(00)88444-5

Nkongolo, K. K., & Narendrula-Kotha, R. (2020) Advances in monitoring soil microbial community dynamic and function. Journal of Applied Genetics, 61, 1-15. https://doi.org/10.1007/s13353-020-00549-5 DOI: https://doi.org/10.1007/s13353-020-00549-5

Ozlu, E., & Kumar, S. (2018). Response of surface GHG fluxes to long-term manure and inorganic fertilizer application in corn and soybean rotation. Science of The Total Environment, 626, 817-825. https://doi.org/10.1016/j.scitotenv.2018.01.120 DOI: https://doi.org/10.1016/j.scitotenv.2018.01.120

Pan, G. X., Zhou, P., & Li, Z. P., Smith, P., Li, L., Qiu, D., Zhang, X., Xu, X., Shen, S., & Chen, X. (2009). Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region. China. Agriculture, Ecosystems & Environment, 131(3-4), 274-280. https://doi.org/10.1016/j.agee.2009.01.020 DOI: https://doi.org/10.1016/j.agee.2009.01.020

Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020) Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583-1594. https://doi.org/10.1111/jam.14506 DOI: https://doi.org/10.1111/jam.14506

Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2, 15221. https://doi.org/10.1038/nplants.2015.221 DOI: https://doi.org/10.1038/nplants.2015.221

Sun, R. B, Zhang, X. X., Guo, X. S., Wang, D. Z., & Chu, H. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 88, 9-18. https://doi.org/10.1016/j.soilbio.2015.05.007 DOI: https://doi.org/10.1016/j.soilbio.2015.05.007

Tiessen, H., & Moir, J. O. (2007). Characterization of available P by sequential extraction. In: Soil sampling and methods of analysis (eds Carter, M. R., & Gregorich, E. G.) (CRC Press, Boca Raton, 2007).

Yang, X., Ni, K., Shi, Y., Yi, X., Zhang, Q., Fang, L., Ma, L., & Ruan, J. (2018). Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agriculture, Ecosystems & Environment, 252, 74-82. https://doi.org/10.1016/j.agee.2017.10.004 DOI: https://doi.org/10.1016/j.agee.2017.10.004

Downloads

Published

2024-07-22

How to Cite

Baryakabona, S., Ssekandi, J., & Turyagyenda, L. F. (2024). Effect of animal manure on population dynamics of indigenous soil Bacillus spp. Brazilian Journal of Science, 3(9), 84–94. https://doi.org/10.14295/bjs.v3i9.628

Issue

Section

Agrarian and Biological Sciences