Can lichens be indicators for air pollution monitoring in Kandy City, Sri Lanka?
DOI:
https://doi.org/10.14295/bjs.v3i8.622Keywords:
air pollution, Thallus morphology and anatomy, secondary metabolites, fecundityAbstract
The quality of the surrounding environment significantly impacts lichen diversity and composition, but crustose lichens, particularly those in disturbed environments, can persist. Although the effects of habitat disturbances on the morphology, anatomy, chemical composition, and fertility of lichen species have not been extensively researched, understanding their mechanisms is crucial for understanding their persistence in their environment. The study aimed to identify common lichen species in polluted and semi-polluted environments and compare their morphology, anatomy, chemical composition, and fertility. A two-kilometer stretch along the road that passes through the University of Peradeniya was selected as the semi-disturbed site based on previous records, while the area around Kandy Lake was designated as the polluted site. Using conventional keys, lichen species were identified, and using a hand lens, dissecting microscope, and compound microscope, the morphological traits of the thallus, apothecia, soredia, and isidia, as well as the anatomical features of the thallus, apothecia, and ascospores, were compared between the two sites. Thin-layer chromatography was used to separate and elucidate the secondary metabolites of lichen. Thirty-nine species were discovered on the university site, 15 in the area around Kandy Lake, and species gathered from both locations shared commonalities, including Physcia sp., Parmotrema sp., Lecanora sp., Graphis sp., and Lepraria sp. The color difference between all species, as measured by mean dE, is visible to the naked eye and changes from a pale to a dark hue from a semi-disturbed site to a polluted one. In comparison to disturbed sites, the majority of species displayed an increased mean area in semi-polluted sites. Layer thickness increases or decreases depending on how well each layer can withstand disruptions. Depsinose has been recognized as a potential class of metabolites generated by lichens present in both locations. Only lake sites exhibit toxic metal compounds, as opposed to semi-disturbed sites. Every pH value was acidic, and most species at the lake site had more acidic pH than those at the university site. There is no specific trend in apothecial number and ascospore numbers in common lichen species in both sites. The current study showed that changes in certain morphological and anatomical biochemical characteristics can be triggered by the environment, suggesting that the quality of the environment significantly affects the growth and reproductive success of lichens, thereby survival or extinction, and proposed that bioindicator and bioaccumulator species concerning the changes occurred.
References
Abas, A. Z. L. A. N., & Awang, A. Z. A. H. A. N. (2017). Air pollution assessments using lichen biodiversity index (LBI) in Kuala Lumpur, Malaysia. Pollution research, 36(2), 242-249.
Abeyratne, V. D., & Ileperuma, O. A. (2011). Air pollution monitoring in the city of Kandy: possible trans boundary effects. Journals of the National Science Foundation of Sri Lanka, 34(3), 137-141. https://doi.org/10.4038/jnsfsr.v34i3.3644 DOI: https://doi.org/10.4038/jnsfsr.v34i3.3644
Al-Thani, R. F., & Al-Meri, H. A. (2011). Study of some lichens of Qatar. Atlas Journal of Biology, 1(3), 41-46. https://doi.org/10.5147/ajb.v1i3.8 DOI: https://doi.org/10.5147/ajb.2011.0046
Armstrong, R., & Bradwell, T. (2010). Growth of crustose lichens: A review. Geografiska Annaler, Series A: Physical Geography, 92(1), 3-17. https://doi.org/10.1111/j.1468-0459.2010.00374.x DOI: https://doi.org/10.1111/j.1468-0459.2010.00374.x
Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P. L., Purvis, O. W., Pirintsos, S., Scheidegger, C., Haluwyn, C., & Wirth, V. (2002). Mapping lichen diversity as an indicator of environmental quality. Monitoring with Lichens — Monitoring Lichens. https://doi.org/10.1007/978-94-010-0423-7_19 DOI: https://doi.org/10.1007/978-94-010-0423-7_19
Attanayake, D. N. S., & Abeygunawardana, R. A. B. (2014). A comprehensive comparison of air pollution in main cities in Sri Lanka. Proceedings of International Forestry and Environment Symposium, 18. https://doi.org/10.31357/fesympo.v18i0.1905 DOI: https://doi.org/10.31357/fesympo.v18i0.1905
Bačkor, M., & Loppi, S. (2009). Interactions of lichens with heavy metals. Biologia Plantarum, 53, 214-222. https://doi.org/10.1007/s10535-009-0042-y DOI: https://doi.org/10.1007/s10535-009-0042-y
Bačkor, M., Pualíková, K., Geralská, A., & Davidson, R. (2003). Monitoring of air pollution in Košice (Eastern Slovakia) using lichens. Polish Journal of Environmental Studies, 12(2), 141-150.
Bajpai, R., Shukla, V., Upreti, D. K., & Semwal, M. (2014). Selection of suitable lichen bioindicator species for monitoring climatic variability in the Himalaya. Environmental Science and Pollution Research, 21, 11380-11394. https://doi.org/10.1007/s11356-014-3063-9 DOI: https://doi.org/10.1007/s11356-014-3063-9
Bajpai, R., Upreti, D. K., & Mishra, S. K. (2004). Pollution monitoring with the help of lichen transplant technique at some residential sites of Lucknow city, Uttar Pradesh. Journal of Environmental Biology, 25(2), 191-195.
Basile, A., Rigano, D., Loppi, S., Di Santi, A., Nebbioso, A., Sorbo, S., Conte, B., Paoli, L., De Ruberto, F., Molinari, A. M., Altucci, L., & Bontempo, P. (2015). Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. International Journal of Molecular Sciences, 16(4), 7861-7875. https://doi.org/10.3390/ijms16047861 DOI: https://doi.org/10.3390/ijms16047861
Benítez, Á., Medina, J., Vásquez, C., Loaiza, T., Luzuriaga, Y., & Calva, J. (2019). Lichens and bromeliads as bioindicators of heavy metal deposition in Ecuador. Diversity, 11(2), 28. https://doi.org/10.3390/d11020028 DOI: https://doi.org/10.3390/d11020028
Bentley, R. (1999). Secondary metabolite biosynthesis: The first century. Critical Reviews in Biotechnology, 19(1), 1-140. https://doi.org/10.1080/0738-859991229189 DOI: https://doi.org/10.1080/0738-859991229189
Bosch-Roig, P., Barca, D., Crisci, G. M., & Lalli, C. (2013). Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. Journal of Atmospheric Chemistry, 70, 373-388. http://dx.doi.org/10.1007/s10874-013-9273-6 DOI: https://doi.org/10.1007/s10874-013-9273-6
Brunialti, G. (2015). Sampling and interpreting lichen diversity data for biomonitoring purposes. In: Recent advances in lichenology: modern methods and approaches in biomonitoring and bioprospection, 1. http://dx.doi.org/10.1007/978-81-322-2181-4_2 DOI: https://doi.org/10.1007/978-81-322-2181-4_2
Onti, M. E., & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment - A review. In Environmental Pollution, 114(3), 471-492. https://doi.org/10.1016/S0269-7491(00)00224-4 DOI: https://doi.org/10.1016/S0269-7491(00)00224-4
Conti, M. E., & Tudino, M. B. (2016). Lichens as biomonitors of heavy-metal pollution. Comprehensive Analytical Chemistry, 73, 117-145. http://dx.doi.org/10.1016/bs.coac.2016.02.005 DOI: https://doi.org/10.1016/bs.coac.2016.02.005
Culberson, C. F. (1972). Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. Journal of Chromatography A, 72(1), 113-125. https://doi.org/10.1016/0021-9673(72)80013-X DOI: https://doi.org/10.1016/0021-9673(72)80013-X
Culberson, C. F., & Kristinsson, H-D. (1970). A standardized method for the identification of lichen products. Journal of Chromatography A, 46, 85-93. https://doi.org/10.1016/S0021-9673(00)83967-9 DOI: https://doi.org/10.1016/S0021-9673(00)83967-9
De Silva, C. M. S. M., & Senanayake, S. P. (2015). Assessment of epiphytic lichen diversity in pine plantations and adjacent secondary forest in Peacock Hill, Pussellawa, Sri Lanka. International Journal of Botany, 5(2), 29-37. https://doi.org/10.5923/j.ijmb.20150502.02
Djekic, T., Jaksic, T., Aleksic, G., Zivic, N., Markovic, M., Stamenkovic, S., & Ristic, S. (2017). Epiphytic lichens as indicators of the air quality in the urban part of Pirot city (Southeastern Serbia) 2002–2014. Oxidation Communications, 40(4), 1429-1442.
Elangasinghe, M. A., & Shanthini, R. (2008). Determination of atmospheric PM10 concentration in Kandy in relation to traffic intensity. Journal of the National Science Foundation of Sri Lanka, 36(3), 245-249. https://doi.org/10.4038/jnsfsr.v36i3.162 DOI: https://doi.org/10.4038/jnsfsr.v36i3.162
Estrabou, C., Stiefkens, L., Hadid, M., Rodríguez, J., & Pérez, A. (2004). Effects of air pollutants on morphology and reproduction in four lichen species in Córdoba, Argentina. Ecología En Bolivia, 39(2), 33-45. http://www.scielo.org.bo/pdf/reb/v39n2/v39n2a05.pdf
Ferry, B. W., & Coppins, B. J. (1979). Lichen transplant experiments and air pollution studies. The Lichenologist, 11(1), 63-73. https://doi.org/10.1017/S0024282979000074 DOI: https://doi.org/10.1017/S0024282979000074
Firdous, S. S., Naz, S., Shaheen, H., & Dar, M. E. U. I. (2017). Lichens as bioindicators of air pollution from vehicular emissions in district Poonch, Azad Jammu and Kashmir, Pakistan. Pakistan Journal of Botany, 49(5), 1801-1810.
Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: Theory and application. Critical Reviews in Plant Sciences, 20(4), 309-371. https://doi.org/10.1080/20013591099254 DOI: https://doi.org/10.1016/S0735-2689(01)80040-X
Garty, J., Tamir, O., Cohen, Y., Lehr, H., & Goren, A. I. (2002). Changes in the potential quantum yield of photosystem II and the integrity of cell membranes relative to the elemental content of the epilithic desert lichen Ramalina maciformis. Environmental Toxicology and Chemistry: An International Journal, 21(4), 848-858. https://doi.org/10.1002/etc.5620210423 DOI: https://doi.org/10.1002/etc.5620210423
Gauslaa, Y. (2014). Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. Lichenologist, 46(1), 1-16. https://doi.org/10.1017/S0024282913000753 DOI: https://doi.org/10.1017/S0024282913000753
Erhardt, A. (2002). Bioindicator species and their use in biomonitoring. In: UNESCO, Editor Encyclopedia of Life Support Systems. Oxford (UK): UNESCO, Eolss, 50 p.
Godinho, R. M., Freitas, M. C., & Wolterbeek, H. T. (2004). Assessment of lichen vitality during a transplantation experiment to a polluted site. Journal of Atmospheric Chemistry, 49, 355-361. https://doi.org/10.1007/s10874-004-1251-6 DOI: https://doi.org/10.1007/s10874-004-1251-6
Goyal, R., & Seaward, M. R. D. (1982). Metal uptake in terricolous lichens: II. Effects on the morphology of Peltigera canina and Peltigera rufescens. New Phytologist, 90(1), 73-84. https://doi.org/10.1111/j.1469-8137.1982.tb03243.x DOI: https://doi.org/10.1111/j.1469-8137.1982.tb03243.x
Gunathilaka, P. A. D. H. N., Ranundeniya, R. M. N. S., Najim, M. M. M., & Seneviratne, S. (2011). A determination of air pollution in Colombo and Kurunegala, Sri Lanka, using energy dispersive X-ray fluorescence spectrometry on
Heterodermia speciosa. Turkish Journal of Botany, 35(4). https://doi.org/10.3906/bot-1006-15 DOI: https://doi.org/10.3906/bot-1006-15
Güvenç, Ş., Yıldız, G., & Dere, E. (2018). Physiological responses of epiphytic lichens to the urban and rural environment in the city of Bursa (Turkey). Afyon Kocatepe University Journal of Sciences and Engineering, 18(1), 33-43. https://dergipark.org.tr/en/pub/akufemubid/issue/43824/536378 DOI: https://doi.org/10.5578/fmbd.66838
Hager, A., Brunauer, G., Türk, R., & Stocker-Wörgötter, E. (2008). Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. Journal of Chemical Ecology, 34, 113-120. https://doi.org/10.1007/s10886-007-9408-9 DOI: https://doi.org/10.1007/s10886-007-9408-9
Hauck, M., Jürgens, S. R., Brinkmann, M., & Herminghaus, S. (2008). Surface hydrophobicity causes SO2 tolerance in lichens. Annals of Botany, 101(4), 531-539. https://doi.org/10.1093/aob/mcm306 DOI: https://doi.org/10.1093/aob/mcm306
Hauck, M., Jürgens, S. R., Willenbruch, K., Huneck, S., & Leuschner, C. (2009). Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Annals of Botany, 103(1), 13-22. https://doi.org/10.1093/aob/mcn202 DOI: https://doi.org/10.1093/aob/mcn202
Huneck, S. (1999). The significance of lichens and their metabolites. In: Die Naturwissenschaften, 86(12), 559-570. https://doi.org/10.1007/s001140050676 DOI: https://doi.org/10.1007/s001140050676
Huneck, S. (2001). New results on the chemistry of lichen substances. In: Fortschritte der Chemie Organischer Naturstoffe, Chapter, Springer, Vienna, 1-276 p. https://doi.org/10.1007/978-3-7091-6196-8_1 DOI: https://doi.org/10.1007/978-3-7091-6196-8_1
Hyvärinen, M., Koopmann, R., Hormi, O., & Tuomi, J. (2000). Phenols in reproductive and somatic structures of lichens: A case of optimal defence? Oikos, 91(2), 371-375. https://doi.org/10.1034/j.1600-0706.2000.910217.x DOI: https://doi.org/10.1034/j.1600-0706.2000.910217.x
Ileperuma, O. A. (2000). Environmental pollution in Sri Lanka: A review. Journal of the National Science Foundation of Sri Lanka, 28(4), 301-325. https://doi.org/10.4038/jnsfsr.v28i4.2644 DOI: https://doi.org/10.4038/jnsfsr.v28i4.2644
Jayalal, U., Oh, S. O., Park, J. S., Sung, J. H., Kim, S. H., & Hur, J. S. (2016). Evaluation of air quality using lichens in three different types of forest in Korea. Forest Science and Technology, 12(1), 1-8. https://doi.org/10.1080/21580103.2014.1003983 DOI: https://doi.org/10.1080/21580103.2014.1003983
Jóźwiak, M. A. (2013). Ectohydricity of lichens and role of cortex layer in accumulation of heavy metals. Ecological Chemistry and Engineering Science, 20(4), 659-676. https://doi.org/10.2478/eces-2013-0045 DOI: https://doi.org/10.2478/eces-2013-0045
Käffer, M. I., Martins, S. M. D. A., Alves, C., Pereira, V. C., Fachel, J., & Vargas, V. M. F. (2011). Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecological Indicators, 11(5), 1319-1332. https://doi.org/10.1016/j.ecolind.2011.02.006 DOI: https://doi.org/10.1016/j.ecolind.2011.02.006
Kekuda, T., Dhanya, R., Dhatri, R., Sunita, C., Onkarappa, R., & Vinayaka, K. (2015). Radical scavenging, antimicrobial and insecticidal efficacy of Parmotrema cristiferum and Dirinaria applanata. Science, Technology and Arts Research Journal, 4(1), 95-102. https://doi.org/10.4314/star.v4i1.16 DOI: https://doi.org/10.4314/star.v4i1.16
Kostryukova, A. M., Krupnova, T. G., Mashkova, I. V., & Schelkanova, E. E. (2017). Monitoring air quality using lichens in Chelyabinsk, Russian Federation. International Journal of GEOMATE, 12(34), 101-106. http://dx.doi.org/10.21660/2017.34.2717 DOI: https://doi.org/10.21660/2017.34.2717
Kuldeep, S., & Prodyut, B. (2015). Lichen as a bio-indicator tool for assessment of climate and air pollution vulnerability: Review. International Research Journal of Environment Sciences, 4(12), 107-117.
Lawrey, J. D., & Kershaw, K. A. (1986). Physiological ecology of lichens. The Bryologist. https://doi.org/10.2307/3243300 DOI: https://doi.org/10.2307/3243300
Logesh, A. (2014). Lichen as indicator of metal pollution in the vicinity of SIPCOT industries in Cuddalore, Southeast Coast of India. Mycosphere, 5(5), 681-687. https://doi.org/10.5943/mycosphere/5/5/9 DOI: https://doi.org/10.5943/mycosphere/5/5/9
Loppi, S., & Frati, L. (2006). Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environmental Monitoring and Assessment, 114, 361-375. https://doi.org/10.1007/s10661-006-4937-1 DOI: https://doi.org/10.1007/s10661-006-4937-1
Loppi, S., Ivanov, D., & Boccardi, R. (2002). Biodiversity of epiphytic lichens and air pollution in the town of Siena (Central Italy). Environmental Pollution, 116(1), 123-128. https://doi.org/10.1016/S0269-7491(01)00151-8 DOI: https://doi.org/10.1016/S0269-7491(01)00151-8
Mamut, R., Li, P., Abbas, A., & Fu, C. (2019). Morphology, chemistry and molecular phylogeny revealed a new species and a new combination of Myriolecis (Lecanoraceae, Ascomycota) from China. The Bryologist, 122(3), 375-383. https://doi.org/10.1639/0007-2745-122.3.375 DOI: https://doi.org/10.1639/0007-2745-122.3.375
Mateos, A. C., & González, C. M. (2016). Physiological response and sulfur accumulation in the biomonitor Ramalina celastri in relation to the concentrations of SO2 and NO2 in urban environments. Microchemical Journal, 125, 116-123. https://doi.org/10.1016/j.microc.2015.11.025 DOI: https://doi.org/10.1016/j.microc.2015.11.025
Moioli, P., & Seccaroni, C. (2000). Analysis of art objects using a portable X-ray fluorescence spectrometer. X-Ray Spectrometry, 29(1), 48-52. https://doi.org/10.1002/(SICI)1097-4539(200001/02)29:1%3C48::AID-XRS404%3E3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1097-4539(200001/02)29:1<48::AID-XRS404>3.0.CO;2-H
Molnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: A review. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 65(3-4), 158-173. https://doi.org/10.1515/znc-2010-3-401 DOI: https://doi.org/10.1515/znc-2010-3-401
Nandasena, Y. L. S., Wickremasinghe, A. R., & Sathiakumar, N. (2010). Air pollution and health in Sri Lanka: A review of epidemiologic studies. BMC Public Health, 10. https://doi.org/10.1186/1471-2458-10-300 DOI: https://doi.org/10.1186/1471-2458-10-300
Nash III, T. H., & Gries, C. (1991). Lichens as indicators of air pollution. In Air-Pollution, 1-29. DOI: https://doi.org/10.1007/978-3-540-47343-5_1
Nash III, T. H. (2008). Lichen biology (2nd ed.). Cambridge University Press, Cambridge.
Nash III, T. M. (2010). Lichen biology (2nd.). Cambridge University Press, Cambridge.
Nimis, P. L., & Purvis, O. W. (2002). Monitoring lichens as indicators of pollution. In: Monitoring with Lichens — Monitoring Lichens. https://doi.org/10.1007/978-94-010-0423-7_2
Nimis, P. L., Scheidegger, C., & Wolseley, P. A. (2002). Monitoring with Lichens — Monitoring Lichens. In Monitoring with Lichens — Monitoring Lichens, 295-299. https://doi.org/10.1007/978-94-010-0423-7_1 DOI: https://doi.org/10.1007/978-94-010-0423-7
Otnyukova, T. (2007). Epiphytic lichen growth abnormalities and element concentrations as early indicators of forest decline. Environmental Pollution, 146(2), 359-365. https://doi.org/10.1016/j.envpol.2006.03.043 DOI: https://doi.org/10.1016/j.envpol.2006.03.043
Paoli, L., Guttová, A., Grassi, A., Lackovičová, A., Senko, D., Sorbo, S., Basile, A., & Loppi, S. (2015). Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia). Environmental Science and Pollution Research, 22, 15891-15902. https://doi.org/10.1007/s11356-015-4807-x DOI: https://doi.org/10.1007/s11356-015-4807-x
Pardow, A., Hartard, B., & Lakatos, M. (2010). Morphological, photosynthetic and water relations traits underpin the contrasting success of two tropical lichen groups at the interior and edge of forest fragments. AoB PLANTS, 2010. https://doi.org/10.1093/aobpla/plq004 DOI: https://doi.org/10.1093/aobpla/plq004
Pitakpong, A., & Maungsan, N. (2018). The use of epiphytic lichen as a biomonitor on air quality, nitrogen dioxide and sulphur dioxide deposition in ab ta phut industrial estate, Rayong province. International Journal of Agricultural Technology.
Premasiri, H. D. S., Samarasinghe, I. H. K., & Lakmali, K. M. N. (2010). Population exposure risk assessment to air pollution in Kandy city area. NBRO – Proceedings of the NBRO Symposium.
Pungin, A., & Dedkov, V. (2017). Assessment of air quality by lichen indication method in the central part of Kaliningrad. Research Journal of Chemistry and Environment, 21(2), 32-39.
Rajeswari, T., & Sailaja, N. (2014). Impact of heavy metals on environmental pollution. Journal of Chemical and Pharmaceutical Sciences, 3, 175-181. https://doi.org/10.1016/0300-483X(94)90042-6 DOI: https://doi.org/10.1016/0300-483X(94)90042-6
Saxena, S., Upreti, D. K., & Sharma, N. (2007). Heavy metal accumulation in lichens growing in north side of Lucknow city, India. Journal of Environmental Biology, 28(1), 49-51. https://jeb.co.in/journal_issues/200701_jan07/paper_09.pdf
Seneviratne, S., Handagiripathira, L., Sanjeevani, S., Madusha, D., Waduge, V. A. A., Attanayake, T., Bandara, D., & Hopke, P. K. (2017). Identification of sources of fine particulate matter in Kandy, Sri Lanka. Aerosol and Air Quality Research, 17(2), 476-484. https://doi.org/10.4209/aaqr.2016.03.0123 DOI: https://doi.org/10.4209/aaqr.2016.03.0123
Sett, R., & Kundu, M. (2016). Epiphytic lichens: Their usefulness as bio-indicators of air pollution. Donnish Journal of Research in Environmental Studies, 3(3), 017-024.
State, G., Popescu, I. V., Gheboianu, A., Radulescu, C., Dulama, I., Bancuta, I., & Stirbescu, R. (2011). Identification of air pollution elements in lichens used as bioindicators, by the XRF and AAS methods. Romanian Reports of Physics, 56(1-2), 240-249.
Valina, Y., Widiani, N., & Laksono, A. (2019). Identification of lichen as an air quality bio-indicator in the campus of the state Islamic Institute Raden Intan Lampung. Journal of Physics: Conference Series, 1155. https://doi.org/10.1088/1742-6596/1155/1/012066 DOI: https://doi.org/10.1088/1742-6596/1155/1/012066
Vokou, D., Pirintsos, S. A., & Loppi, S. (1999). Lichens as bioindicators of temporal variations in air quality around Thessaloniki, Northern Greece. Ecological Research, 14, 89-96. https://doi.org/10.1046/j.1440-1703.1999.00294.x DOI: https://doi.org/10.1046/j.1440-1703.1999.00294.x
Wakefield, J. M., & Bhattacharjee, J. (2012). Effect of air pollution on chlorophyll content and lichen morphology in Northeastern Louisiana. Evansia, 29(4), 104-114. https://doi.org/10.1639/079.029.0404 DOI: https://doi.org/10.1639/079.029.0404
Weerakoon, G., & Aptroot, A. (2014). Over 200 New lichen records from Sri Lanka, with three new species to science. Cryptogamie, Mycologie, 35(1), 51-62. https://doi.org/10.7872/crym.v35.iss1.2014.51 DOI: https://doi.org/10.7872/crym.v35.iss1.2014.51
Weerakoon, G., & Aptroot, A. (2016). Nine new lichen species and 64 new records from Sri Lanka. Phytotaxa, 280(2), 152-162. http://dx.doi.org/10.11646/phytotaxa.280.2.5 DOI: https://doi.org/10.11646/phytotaxa.280.2.5
Weerakoon, G., Lücking, R., & Lumbsch, H. T. (2014). Thirteen new species of Graphidaceae (lichenized Ascomycota: Ostropales) from Sri Lanka. Phytotaxa, 189(1). https://doi.org/10.11646/phytotaxa.189.1.24 DOI: https://doi.org/10.11646/phytotaxa.189.1.24
Weerakoon, G., Wolseley, P. A., Arachchige, O., Cáceres, M. E. S., Jayalal, U., & Aptroot, A. (2016). Eight new lichen species and 88 new records from Sri Lanka. The Bryologist, 119(2), 131-142. https://doi.org/10.1639/0007-2745-119.2.131 DOI: https://doi.org/10.1639/0007-2745-119.2.131
Weerakoon, G. (2015). Fascinating lichens of Sri Lanka, Colombo, Sri Lanka, Ceylon Tea Services, PLC, 188 p.
Wijesundara, S., & Karunaratne, V. (2015). Third national workshop on lichens: Over fifteen years of progress in lichen research in Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 43(2), 195-196. http://dx.doi.org/10.4038/jnsfsr.v43i2.7947 DOI: https://doi.org/10.4038/jnsfsr.v43i2.7947
Yatawara, M., & Dayananda, N. (2019). Use of corticolous lichens for the assessment of ambient air quality along rural–urban ecosystems of tropics: a study in Sri Lanka. Environmental Monitoring and Assessment, 191. https://doi.org/10.1007/s10661-019-7334-2 DOI: https://doi.org/10.1007/s10661-019-7334-2
Yildiz, A., Aksoy, A., Akbulut, G., Demirezen, D., Islek, C., Altuner, E. M., & Duman, F. (2011). Correlation between chlorophyll degradation and the amount of heavy metals found in Pseudevernia furfuracea in Kayseri (Turkey). Ekoloji, 20(78), 82-88. https://doi.org/10.5053/ekoloji.2011.7813 DOI: https://doi.org/10.5053/ekoloji.2011.7813
Zulaini, A. A. M., Muhammad, N., Asman, S., Hashim, N. H., Jusoh, S., Abas, A., Yusof, H., & Din, L. (2019). Evaluation of transplanted lichens, Parmotrema Tinctorum and Usnea diffracta as bioindicator on heavy metals accumulation in southern Peninsular Malaysia. Journal of Sustainability Science and Management, 14(4), 1-13.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Edirisinghege Sanduni Madushika Edirisinghe, Athukoralage Dona Sarangi Nirosha Priyajeevani Athukorala Athukorala
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Funding data
-
University of Peradeniya
Grant numbers URG/2019/30/S