Synthesis and characterization of Fe-doped CuO nanoparticles: Catalytic efficiency in crystal violet dye degradation and exploration of electrical properties
DOI:
https://doi.org/10.14295/bjs.v3i8.601Keywords:
hydrothermal method, photocatalytic degradation, crystal violet dyeAbstract
In recent times, environmental pollution has become a pressing issue. Different methods have been developed to detach hazardous materials from H2O bodies. Among these techniques, photo-catalysis has emerged as a low-cost and advanced method. However, finding a potent photocatalyst has been a topic of considerable research. Our study prepared CuO from copper acetate using hydrothermal treatment in an autoclave at 170 ºC for 14 hours. We introduced various quantities of Fe by adding FeSO4 mixture to Cu (CH3COO)2, following the identical method for preparing CuO. The resulting precipitate was cleaned with deionized H2O and dried at 100 °C. The prepared substance was then heated at 450 ºC in a muffle furnace for 60 minutes. We characterized the manufacture of photocatalysts utilizing various techniques such as Ultraviolet (UV), FT-IR, SEM, EDX, and XRD. Our Ultraviolet (UV) spectrum analysis helped us recognize the adsorption spectroscopic analysis of un-doped and doped CuO with various ratios of Fe. FTIR spectroscopic analysis helped us identify functional groups in CuO NPs. Our XRD study showed the monoclinic composition of copper oxide nanoparticles. The SEM picture suggested that NPs exist in a spherical shape. We studied the catalytic activity of synthesized NPs concerning crystal violet (CV) colorant degradation below a direct ray of light irradiation. Our results showed that the degradation productiveness, as compared to CV colorant, was about 93.52% in 180 min. This research is of great importance in the quest for effective and sustainable solutions to environmental problems. The examination of electrical properties highlighted the promising aspects of Fe-doped CuO, particularly at 6% doping. This variant demonstrated superior dielectric parameters, lower tangent loss, semiconductor-like impedance behavior, and enhanced electrical conductivity, emphasizing its potential for applications in electrical and energy storage domains.
References
Abdelrahman, E. A., Algethami, F. K., AlSalem, H. S., Binkadem, M. S., Saad, F. A., El-Sayyad, G. S., Raza, N., & ur Rehman, K. (2023). Facile synthesis and characterization of novel nanostructures for the efficient disposal of crystal violet dye from aqueous media. Inorganics, 11(8), 339. https://doi.org/10.3390/inorganics11080339 DOI: https://doi.org/10.3390/inorganics11080339
Agarwal, R., Verma, K., Agrawal, N. K., Duchaniya, R. K., & Singh, R. (2016). Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Applied Thermal Engineering, 102, 1024-1036. https://doi.org/10.1016/j.applthermaleng.2016.04.051 DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.051
Ahamed, M., Alhadlaq, H. A., Khan, M A. M., Karuppiah, P., & Al-Dhabi, N. A. (2014). Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. Journal of Nanomaterials, 2014, 17-17. http://dx.doi.org/10.1155/2014/637858 DOI: https://doi.org/10.1155/2014/637858
Ali, S., Ali, S., Khan, I., Zahid, M., Ismail, P. M., Ismail, A., Zada, A., Ullah, R., Hayat, S., Ali, H., Kamal, M. R., Alibrahim, K. A., Bououdina, M., Bakhtiar, S. H., Wu, X., Wang, Q., Raziq, F., & Qiao, L. (2024). Molecular modulation of interfaces in a Z-scheme van der Waals heterojunction for highly efficient photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 663, 31-42. https://doi.org/10.1016/j.jcis.2024.02.081 DOI: https://doi.org/10.1016/j.jcis.2024.02.081
Ali, S., Ismail, P. M., Khan, M., Dang, A., Ali, S., Zada, A., Raziq, F., Khan, I., Khan, M. S., Ateeq, M., Khan, W., Bakhtiar, S. H., Ali, H., Wu, X., Shah, M. I., Vinu, A., Yi, J., Xia, P., & Qiao, L. (2024). Charge transfer in TiO 2-based photocatalysis: fundamental mechanisms to material strategies. Nanoscale, 9(16), 4352-4377. https://pubs.rsc.org/en/content/articlelanding/2024/nr/d3nr04534j/unauth DOI: https://doi.org/10.1039/D3NR04534J
Aparna, Y., Rao, K. V. E., & Subbarao, P. S. (2012). Synthesis and characterization of CuO nano particles by novel sol-gel method. In: Proceedings of the 2nd International Conference on Environment Science and Biotechnology, IACSIT Press Singapore, 48, 156-160 p. https://doi.org/10.7763/IPCBEE DOI: https://doi.org/10.7763/ipcbee
Attiya, H. G., Fendi, W. J., Al-Dulaimy, Z. A., Farooq, A., & Mohammed, A. M. (2023). Characterization synthesis of Copper oxide. Nanoparticles application. A review. Journal of Pharmaceutical Negative Results, 14(2), 250-256. https://doi.org/10.47750/pnr.2023.14.S02.32
Balkrishna, A., Arya, V., Rohela, A., Kumar, A., Verma, R., Kumar, D., Nepovimova, E., Kuca, K., Thakur, N., Thakur, N., & Kumar, P. (2021). Nanotechnology interventions in the management of COVID-19: prevention, diagnosis and virus-like particle vaccines. Vaccines, 9(10), 1129. https://doi.org/10.3390/vaccines9101129 DOI: https://doi.org/10.3390/vaccines9101129
Bayansal, F., Taşköprü, T., Şahin, B., & Çetinkara, H. A. (2014). Effect of cobalt doping on nanostructured CuO thin films. Metallurgical and Materials Transactions A, 45, 3670-3674. https://doi.org/10.1007/s11661-014-2306-1 DOI: https://doi.org/10.1007/s11661-014-2306-1
Bolivar, P. H., Brucherseifer, M., Rivas, J. G., Gonzalo, R., Ederra, I., Reynolds, A. L., Holker, M., & Maagt, P.. (2003). Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies. IEEE - Transactions on Microwave Theory and Techniques, 51(4), 1062-1066. https://doi.org/10.1109/TMTT.2003.809693 DOI: https://doi.org/10.1109/TMTT.2003.809693
Darr, J. A., Zhang, J., Makwana, N. M., & Weng, X. (2017). Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chemical Reviews, 117(17), 11125-11238. https://doi.org/10.1021/acs.chemrev.6b00417 DOI: https://doi.org/10.1021/acs.chemrev.6b00417
Greuter, F., & Blatter. (1990). Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semiconductor Science and Technology, 5(2), 111. DOI 10.1088/0268-1242/5/2/001 DOI: https://doi.org/10.1088/0268-1242/5/2/001
Guo, X., & Waser, R. (2006). Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Progress in Materials Science, 51(2), 151-210. https://doi.org/10.1016/j.pmatsci.2005.07.001 DOI: https://doi.org/10.1016/j.pmatsci.2005.07.001
Hu, D., Song, T., Zada, A., Yan, R., Li, Z., Zhang, Z., Bian, J., Qu, Y., & Jing, L. (2023). Graphene oxide modulated dual S-scheme ultrathin heterojunctions with iron phthalocyanine and phase-mixed bismuth molybdate as wide visible-light catalysts. Environmental Science: Nano, 10(3), 922-932. DOI: https://doi.org/10.1039/D2EN01148D
Hu, X., Yan, L., Wang, Y., Xu, M. (2020). Freeze-thaw as a route to build manageable polysaccharide cryogel for deep cleaning of crystal violet. Chemical Engineering Journal, 396, 125354. https://doi.org/10.1016/j.cej.2020.125354 DOI: https://doi.org/10.1016/j.cej.2020.125354
Ibupoto, Z. H., Tahira, A., Raza, H., Ali, G., Khand, A. A., Jilani, N. S., Mallah, A. B., Yu, C., & Willander, M. (2018). Synthesis of heart/dumbbell-like CuO functional nanostructures for the development of uric acid biosensor. Materials, 11(8), 1378. https://doi.org/10.3390/ma11081378 DOI: https://doi.org/10.3390/ma11081378
Ishai, P. B., Talary, M. S., Caduff, A., Levy, E., & Feldman, Y. (2013). Electrode polarization in dielectric measurements: A review. Measurement Science and Technology, 24(10), 102001. DOI 10.1088/0957-0233/24/10/102001 DOI: https://doi.org/10.1088/0957-0233/24/10/102001
Jabli, M. (2023). Preparation of alkali lignin extracted from ligno-cellulosic populus tremula fibers: Application to copper oxide nanoparticles synthesis, characterization, and methylene blue biosorption study. International Journal of Biological Macromolecules, 226, 956-964. https://doi.org/10.1016/j.ijbiomac.2022.12.097 DOI: https://doi.org/10.1016/j.ijbiomac.2022.12.097
Jonscher, A. K. (1972). Frequency-dependence of conductivity in hopping systems. Journal of Non-Crystalline Solids, 8-10, 293-315. https://doi.org/10.1016/0022-3093(72)90151-2 DOI: https://doi.org/10.1016/0022-3093(72)90151-2
Kao, K. C. (2004). Dielectric phenomena in solids. With emphasis on physical concepts of eletronic processes. Elsevier Academic Press.
Khan, I., Liao, B., khan, S., Zada, A., Ali, S., Rizwan, M., Khan, A., Shah, M. I., & Alodhayb, A. (2023). Engineering selective CO2 photoreduction by tailored interfacial design of P-modulated CuPc/B-C3N4 heterojunction for improved C2H4 selectivity. Catalysis Science & Technology. DOI: https://doi.org/10.1039/D3CY01447A
Khan, M., Hussain, A., Saleh, M. T., Ibrahim, M., Attique, F., Sun, X., Unalan, H. E., Shafi, M., Khan, Y., Khan, I., Ragab, A. H., Hassan, A. A., Ali, R., Ali, Z., Khan, A. J., & Zada, A. (2024). Cutting-edge advancements in MXene-derived materials: Revolutionary electrocatalysts for hydrogen evolution and high-performance energy storage. Coordination Chemistry Reviews, 506, 215722. https://doi.org/10.1016/j.ccr.2024.215722 DOI: https://doi.org/10.1016/j.ccr.2024.215722
Khan, M., Khan, A. A., Parveen, A., Min, K., Yadav, V. K., Khan, A. U., & Alam, M. (2023). Mitigating the growth of plant pathogenic bacterium, fungi, and nematode by using plant-mediated synthesis of copper oxide nanoparticles (CuO NPs). Green Chemistry Letters and Reviews, 16(1), 2177520. https://doi.org/10.1080/17518253.2023.2177520 DOI: https://doi.org/10.1080/17518253.2023.2177520
Khmissi, H., El Sayed, A. M., & Shaban, M. (2016). Structural, morphological, optical properties and wettability of spin-coated copper oxide; influences of film thickness, Ni, and (La, Ni) co-doping. Journal of Materials Science, 51, 5924-5938. https://doi.org/10.1007/s10853-016-9894-7 DOI: https://doi.org/10.1007/s10853-016-9894-7
Koshy, J., Soosen, S. M., Chandran, A., & George, K. C. (2015). Correlated barrier hopping of CuO nanoparticles. Journal of Semiconductors, 36(12), 122003. DOI 10.1088/1674-4926/36/12/122003 DOI: https://doi.org/10.1088/1674-4926/36/12/122003
Lewiner, J. (2010). Space charge and polarization in insulators: a long history with a promising future. IEEE - Transactions on Dielectrics and Electrical Insulation, 17(4), 1096-1105. https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=94 DOI: https://doi.org/10.1109/TDEI.2010.5539680
Liu, N., Chen, X., Zhang, J., & Schwank, J. W. (2014). A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 225, 34-51. https://doi.org/10.1016/j.cattod.2013.10.090 DOI: https://doi.org/10.1016/j.cattod.2013.10.090
Lu, L., Shen, Y., Chen, X., Qian, L., & Lu, K. (2004). Ultrahigh strength and high electrical conductivity in copper. Science, 304(5669), 422-426. https://doi.org/10.1126/science.1092905 DOI: https://doi.org/10.1126/science.1092905
Madani, S. S., Habibi-Yangjeh, A., Asadzadeh-Khaneghah, S., Chand, H., Krishnan, V., & Zada, A. (2021). Integration of Bi4O5I2 nanoparticles with ZnO: impressive visible-light-induced systems for elimination of aqueous contaminants. Journal of the Taiwan Institute of Chemical Engineers, 119, 177-186. https://doi.org/10.1016/j.jtice.2021.01.020 DOI: https://doi.org/10.1016/j.jtice.2021.01.020
Maier, J. (2023). Physical chemistry of ionic materials: Ions and electrons in solids. Second Edition, John Wiley & Sons.
Martinez-Vega, J. (2013). Dielectric materials for electrical engineering. ISTE, John Wiley & Sons. DOI: https://doi.org/10.1002/9781118557419
Mittal, A.,Mittal J., Malviya, A., Kaur, D., & Gupta, V. K. (2010). Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 343(2), 463-473. https://www.cabidigitallibrary.org/doi/full/10.5555/20103071066 DOI: https://doi.org/10.1016/j.jcis.2009.11.060
Mohanapandian, K., Ponnarasan, V., & Thirupathy, J. (2024). An investigation on structural, dielectric and optical properties of pure and Fe-doped CuO nanoparticles for optoelectronic device applications. Optical and Quantum Electronics, 56(3), 347. https://doi.org/10.1007/s11082-023-05977-1 DOI: https://doi.org/10.1007/s11082-023-05977-1
Moore, E. A., & Smart, L. E. (2020). Solid state chemistry and introduction. Chapter: Optical properties of solids. Solid State Chemistry, 5th Edition, 32 p. DOI: https://doi.org/10.1201/9780429027284
Muhammad, P., Zada, A., Eashid, J., Hanif, S., Gao, H., Li, C., Li, Y., Fan, K., & Wang, Y. (2024). Defect engineering in nanocatalysts: From design and synthesis to applications. Advanced Functional Materials, 2314686. https://doi.org/10.1002/adfm.202314686 DOI: https://doi.org/10.1002/adfm.202314686
Muhiuddin, G., Bibi, I., Nazeer, Z., Majid, F., Kamal, S., Kausar, A., Raza, Q., Alwadai, N., Ezzine, S., & Iqbal, M. (2023). Synthesis of Ni doped barium hexaferrite by microemulsion route to enhance the visible light-driven photocatalytic degradation of crystal violet dye. Ceramics International, 49(3), 4342-4355. https://doi.org/10.1016/j.ceramint.2022.09.319 DOI: https://doi.org/10.1016/j.ceramint.2022.09.319
Naika, H. R., Lingaraju, K., Manjunath, K., Kumar, D., Nagaraju, G., Suresh, D., & Ngagabhushana, H. (2015). Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Journal of Taibah University for Science, 9(1), 7-12. https://doi.org/10.1016/j.jtusci.2014.04.006 DOI: https://doi.org/10.1016/j.jtusci.2014.04.006
Naz, S., Gul, A., Zia, M., & Javed, R. (2023). Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Applied Microbiology and Biotechnology, 107(4), 1039-1061. https://doi.org/10.1007/s00253-023-12364-z DOI: https://doi.org/10.1007/s00253-023-12364-z
Nazir, R., Khan, M., Riaz-ur-Rehman, Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., & Ahmad, I. (2020). Adsorption of selected azo dyes from an aqueous solution by activated carbon derived from Monotheca buxifolia waste seeds. Soil and Water Research, 15(3), 166-172. https://www.cabidigitallibrary.org/doi/full/10.5555/20203445539 DOI: https://doi.org/10.17221/59/2019-SWR
Oruç, Ç., & Altındal, A. (2017). Structural and dielectric properties of CuO nanoparticles. Ceramics International, 43(14), 10708-10714. https://doi.org/10.1016/j.ceramint.2017.05.006 DOI: https://doi.org/10.1016/j.ceramint.2017.05.006
Pervaiz, S., Shah, S. W. H., ul Wahab, Z., Farooq, M., Hallem, A., & Zada, A. (2023). Oil mediated polymer based green synthesis of calcium hydroxide nanoparticles and their application in bone conservation. Zeitschrift für Physikalische Chemie. https://doi.org/10.1515/zpch-2023-0452 DOI: https://doi.org/10.1515/zpch-2023-0452
Quan, B., Liang, X., Ji, G., Xheng, Y., Liu, W., Ma, J., Zhang, Y., Li, D., & Xu, G. (2017). Dielectric polarization in electromagnetic wave absorption: review and perspective. Journal of Alloys and Compounds, 728, 1065-1075. https://doi.org/10.1016/j.jallcom.2017.09.082 DOI: https://doi.org/10.1016/j.jallcom.2017.09.082
Saeed, F., Ahmad, M., Samia, Zada, A., Qi, D., & Wang, Y. (2024). Phosphorus-doped CoFe2O4 nanoparticles decorated nitrogen-doped graphene for efficient and stable electrocatalytic water splitting. International Journal of Hydrogen Energy, 59, 1196-1204. https://doi.org/10.1016/j.ijhydene.2024.01.035 DOI: https://doi.org/10.1016/j.ijhydene.2024.01.035
Sagadevan, S., & Murugasen, P. (2015). Electrical properties of copper oxide nanoparticles. Journal of Nano Research, 30, 1-8. https://doi.org/10.4028/www.scientific.net/JNanoR.30.1 DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.30.1
Sati, P. C., Arora, M., Chauhan S., Kumar, M., & Chhoker, S. (2014). Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceramics International, 40(6), 7805-7816. https://doi.org/10.1016/j.ceramint.2013.12.124 DOI: https://doi.org/10.1016/j.ceramint.2013.12.124
Sayer, M., Mansingh, A., Webb, J. B., & Noad, J. (1978). Long-range potential centres in disordered solids. Journal of Physics C: Solid State Physiccs, 11(2), 315. DOI 10.1088/0022-3719/11/2/016 DOI: https://doi.org/10.1088/0022-3719/11/2/016
Schrödle, S., Annat, G., MacFarlane, D. R., Forsyth, M., Buchner, R., & Hefter, G. (2007). "High frequency dielectric response of the ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide. Australian Journal of Chemistry, 60(1), 6-8. https://doi.org/10.1071/CH06251 DOI: https://doi.org/10.1071/CH06251
Shaheen, S., Xu, S., Bian, J., Zada, A., Zhang, Z-Q., Qu, Y., & Jing, L-Q. (2024). Facile synthesis of hierarchical NiO/NiFe2O4 microsphere composite as efficient visible photocatalyst for 2, 4-DCP degradation. Rare Metals, 43, 1-9. https://doi.org/10.1007/s12598-023-02585-6 DOI: https://doi.org/10.1007/s12598-023-02585-6
Sinha, I., & De, A. K. (2020). An overview of synthesis techniques for preparing doped photocatalysts. Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants, 1-13, Chapter 1. https://doi.org/10.1016/B978-0-12-818598-8.00001-8 DOI: https://doi.org/10.1016/B978-0-12-818598-8.00001-8
Thakur, N., & Kumar, J. (2018). Synthesis characterization and antibacterial study of co doped copper oxide nanoparticles. http://hdl.handle.net/10603/340612
Viruthagiri, G., Gopinathan, E., Shanmugam, N., & Gobi, R. (2014). Synthesis and characterization of ZrO2–CuO co-doped ceria nanoparticles via chemical precipitation method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 556-563. https://doi.org/10.1016/j.saa.2014.04.117 DOI: https://doi.org/10.1016/j.saa.2014.04.117
Xu, B., Zada, A., Wang, G., & Qu, Y. (2019). Boosting the visible-light photoactivities of BiVO4 nanoplates by Eu doping and coupling CeOx nanoparticles for CO2 reduction and organic oxidation. Sustaibable Energy & Fuels, 3(12), 3363-3369. https://pubs.rsc.org/en/content/articlelanding/2019/se/c9se00409b/unauth DOI: https://doi.org/10.1039/C9SE00409B
Xu, M., Zada, A., Yan, R., Li, H., Sun, N., & Qu, Y. (2020). Ti2O3/TiO2 heterophase junctions with enhanced charge separation and spatially separated active sites for photocatalytic CO2 reduction. Physical Chemistry Chemical Physics, 22(8), 4526-4532. https://pubs.rsc.org/en/content/articlelanding/2020/cp/c9cp05147c/unauth DOI: https://doi.org/10.1039/C9CP05147C
Yang, G., & Park, S-J. (2019). Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Materials, 12(7), 1177. https://doi.org/10.3390/ma12071177 DOI: https://doi.org/10.3390/ma12071177
Yildirimcan, S. (2023). "Effect of ageing on electrical properties of Fe-doped CuO thin films deposited by spin coating technique. Indian Journal of Physics, 97(6), 1707-1716. https://doi.org/10.1007/s12648-022-02511-z DOI: https://doi.org/10.1007/s12648-022-02511-z
Zada, A., et al. (2020). Surface plasmon resonance excited electron induction greatly extends H2 evolution and pollutant degradation activity of g‐C3N4 under visible light irradiation. Journal of the Chinese Chemical Society, 67(6), 983-989. https://doi.org/10.1002/jccs.201900398 DOI: https://doi.org/10.1002/jccs.201900398
Zada, A., Qu, Y., Ali, S., Sun, N., Lu, H., Yan, R., Zhang, X., & Jing, L. (2018). Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2, 4-dichlorophenol decomposition path. Journal of Hazardous Materials, 342, 715-723. https://doi.org/10.1016/j.jhazmat.2017.09.005 DOI: https://doi.org/10.1016/j.jhazmat.2017.09.005
Zhao, Y., Zada, A., Yang, Y., Pan, J., Wang, Y., Yan, Z., Xu, Z., & Qi, K. (2021). Photocatalytic removal of antibiotics on g-C3N4 using amorphous CuO as cocatalysts. Frontiers in Chemistry, 9, 797738. https://doi.org/10.3389/fchem.2021.797738 DOI: https://doi.org/10.3389/fchem.2021.797738
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bushra, Muhammad Kashif, Khairullah, Azmat Ali Khan, Hao Sun, Jasim Kamal, Muhammad Ishaq Ali Shah, Shah Hussain, Jalal Amir, Yousaf Jamal, Taimoor Ahmad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.