Effect of potassium silicate on development and productivity in soybean [Glycine max (L.) Merrill] cultivars in an experimental cultivation area in the Brazilian Cerrado





silicon, Si, Glycine, vegetative parameters, adubation


Silicon (Si) is considered an essential element for the development of several groups of vegetables, including legumes (Soy) [Glycine max (L.) Merrill.]. This study aimed to evaluate different doses of potassium silicate (K2SiO4) rich in Si (25%) regarding the effects on the vegetative and reproductive phases for two soybean cultivars with technology HO IPRO Corumbá and HO i2x Mogi in red distroferric soil in the Southwest of Goiás, Brazil. Si doses (0, 150, 300, 600, and 900 kg ha-1) were evaluated for the parameters plant length, root length, aerial and root fresh mass, aerial and root dry mass, and number of pods for two cultivars Corumbá and Mogi. The results demonstrated positive effects for the Si doses applied, mainly at doses of 300-600 kg ha-1 for most parameters and for the dose of 900 kg ha-1 for the number of pods. Different dosages of Si expressed in potassium silicate demonstrated positive effects on the vegetative and reproductive increments of soybean cultivars Corumbá and Mogi.


Asae. (2000). American Society of Agricultural Engineers. Moisture measurement – Unground grain and seeds, St. Joseph: ASAE, 563 p.

Bertolin, D. C., Sá, M. E., Arf, O., Júnior, E. F., Colombo, A. S., & Carvalho, F. B. M. (2010). Aumento da reprodutividade de soja com a aplicação de bioestimulantes. Bragantia, 69(2), 339-347. https://doi.org/10.1590/S0006-87052010000200011 DOI: https://doi.org/10.1590/S0006-87052010000200011

Brasil. (2009). Ministério da Agricultura. Regras para análises de aquênios. Brasília: Mapa/ACS.

Chung, Y. S., Kim, K-S., Hamayum, M., & Kim, Y. (2020). Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01725 DOI: https://doi.org/10.3389/fpls.2019.01725

Coelho, P. H., Benett, K. S. S., Arruda, N., Benett, C. G. S., & Nascimento, M. V. (2019). Crescimento e produtividade de dois cultivares de soja em função de doses de silício. Revista de Agricultura Neotropical, 6(3), 60-65. https://doi.org/10.32404/rean.v6i3.2602 DOI: https://doi.org/10.32404/rean.v6i3.2602

Costa, N. P., Mesquita, C. M., Maurina, A. C., Neto, J. B. F., Krzyzanowski, F. C., Oliveira, M. C. N., & Henning, A. (2005). Revista Brasileira de Sementes, 27(2), 01-06. https://doi.org/10.1590/S0101-31222005000200025 DOI: https://doi.org/10.1590/S0101-31222005000200025

Crusciol, C. A. C., Soratto, R. P., Castro, G. S. A., Costa, C. H. M., & Ferrari Neto, J. (2013). Aplicação foliar de ácido silícico estabilizado na soja, feijão e amendoim. Revista Ciência Agronômica, 44(2), 404-410. http://dx.doi.org/10.1590/S1806-66902013000200025 DOI: https://doi.org/10.1590/S1806-66902013000200025

Delouche, J. C., & Baskin, C. C. (1973). Accelerated aging techniques for predicting the relative storability of seed lots. Seed Science and Technology, 1, 427-452.

Deren, C. (2001). Plant genotypes, silicon concentration and silicon related responses. In: Datnoff, L. E., Snyder, G. H., & Korndörfer, G. H. Silicon in Agriculture. Netherlands: Elsevier Science, chapter 8, 149-158. DOI: https://doi.org/10.1016/S0928-3420(01)80012-4

Deshmukh, R., & Bélanger, R. R. (2016). Molecular evolution of auaporins and silicon influx in plants. Functional Ecology, 30(8), 1277-1285. https://doi.org/10.1111/1365-2435.12570 DOI: https://doi.org/10.1111/1365-2435.12570

Dola, D. B., Mannan, A., Sarker, U., Mamun, A. A., Islam, T., Ercisli, S., Saleem, M. H., Ali, B., Pop, O. L., & Marc, R. A. (2022). Nano-iron oxid accelerates growth, yield, and quality of Glycine max seed in water deficits. Frotiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.992535 DOI: https://doi.org/10.3389/fpls.2022.992535

Ellis, M. A., Ilyas, M. B., & Sinclair, J. B. (1991). Effect of three fungicides on internally. In: International Rice Research Institute. Rice germplasm collecting, preservation, USE. Manila: [s.n.], 81-85 p.

Ferrazza, F. L. F., Jacoboski, D. T. K., Wyrepkowski, A., Rodrigues, L., Figueiro, A. G., & Paragisnki, R. T. (2020). Qualidade de sementes e parâmetros produtivos de sementes de soja submetidas a diferentes tratamentos de sementes antes da semeadura. Research, Society and Development, 9(9), e47996232. http://dx.doi.org/10.33448/rsd-v9i9.6232 DOI: https://doi.org/10.33448/rsd-v9i9.6232

Ferreira, D. F. (2019). Sisbvar: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450

Harter, F. S., & Barros, A. C. S. A. (2011). Cálcio e silício na produção e qualidade de sementes de soja. Revista Brasileira de Sementes, 33(1), 054-060. https://doi.org/10.1590/S0101-31222011000100006 DOI: https://doi.org/10.1590/S0101-31222011000100006

Islam, W., Tayyab, M., Khalil, F., Hua, Z., Huang, Z., & Chen, H. Y. H. (2020). Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology, 168, 104641. https://doi.org/10.1016/j.pestbp.2020.104641 DOI: https://doi.org/10.1016/j.pestbp.2020.104641

Ista. (2008). ISTA – A century of progress in seed quality assurance. Available in: https://www.seedtest.org/en/home.html Access in 05/20/2024.

Jang, S. W., Kim, Y., Khan, A. L., Na, C. I., and Lee, I. J. (2018). Exogenous shortterm silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biology, 18, 4. https://doi.org/10.1186/s12870-017-1216-y DOI: https://doi.org/10.1186/s12870-017-1216-y

Johnson, S. N., Rowe, R. C., & Hall, C. R. (2019). Silicon is an inducible and effective herbivore defense against Helicoverpa puctigera (Lepidoptera: noctuidae) in soybean. Bulletin of Entomological Research, 110, 417-422. https://doi.org/10.1017/S0007485319000798 DOI: https://doi.org/10.1017/S0007485319000798

Júnior, P. P., Rezende, P. M., Malfitano, S. C., Lima, R. K., Corrêa, L. V. T., & Carvalho, E. R. (2010). Efeito de doses de silício sobre a produtividade e características agronômicas da soja [Glycine max (L.) Merrill]. Ciência Agrotécnica, 34(4), 908-913. https://doi.org/10.1590/S1413-70542010000400016

Kim, Y. H., Khan, A. L., & Lee, I. J. (2016). Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions. Critical Reviews Biotechnology, 36(6), 1099-1109. https://doi.org/10.3109/07388551.2015.1084265 DOI: https://doi.org/10.3109/07388551.2015.1084265

Korndorfer, G. H., & Datnoff, L. E. (2000). Papel do silício na produção de cana de açúcar. In: SECAP 200, Seminário de Cana de Açúcar de Piracicaba, 5, Piracicaba, São Paulo, Brasil, July.

Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., & Katsuhara, M. (2006). Silicon transporter in rice. Nature, 440, 688-691. https://www.nature.com/articles/nature04590 DOI: https://doi.org/10.1038/nature04590

Ma, J. F., Miyakey, Y., & Takahashi, E. (2001). Silicon as a beneficial element for crop plants. In: Datinoff, L. E., Sndyder, G. H., & Korndörfer, G. H. Silicon on agriculture. Amesterdam: Elsevier, 17-39 p. DOI: https://doi.org/10.1016/S0928-3420(01)80006-9

Marschner, H. (1995). Mineral nutrition of higher plants. 2. ed. San Diego: Academic Press, 889 p.

Mitani, N., Chiba, Y., Yamaji, N., & Ma, J. F. (2009). Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell, 21(7), 2133-2142. https://doi.org/10.1105/tpc.109.067884 DOI: https://doi.org/10.1105/tpc.109.067884

Moraes, E. R., Reis, A. C., Silva, N. E. P., Ferreira, M., & Menezes, F. G. (2018). Nutrientes no solo e produção de quiabo conforme doses de silicato de cálcio e magnésio. Revista de Agricultura Neootropical, 5(1), 60-65. https://doi.org/10.32404/rean.v5i1.2097 DOI: https://doi.org/10.32404/rean.v5i1.2097

Moreira, A. R., Fagan, E. B., Martins, K. V., & Souza, C. H. E. (2010). Resposta da cultura de soja a aplicação de silício foliar. Bioscience Journal, 26(3), 413-423.

Naamala, J., Msimbira, L. A., Subramanian, S., & Smith, D. L. (2023). Lactobacillus helviticus EL2006H cell-free supernatant enhances growth variables in Zea mays (maize), Glycine max L. Merill (soybean) and Solanum tuberosum (potato) exposed to NaCl stress. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1075633 DOI: https://doi.org/10.3389/fmicb.2022.1075633

Oliveira, S., Lemes, E. S., Meneghello, G. E., Tavares, L. C., & Barros, A. C. S. A. (2015). Aplicação de silício via solo no rendimento e na qualidade fisiológica de sementes de soja. Semina: Ciências Agrárias, 36(5), 3029-4042. http://dx.doi.org/10.5433/1679-0359.2015v36n5p3029 DOI: https://doi.org/10.5433/1679-0359.2015v36n5p3029-3042

Pereira Júnior, P., Rezende, P. M., Malfitano, S. C., Lima, R. K., & Orrêa, L. V. T. (2010). Efeito de doses de silício sobre a produtividade e características agronômicas da soja [Glycine max (L.) Merrill]. Ciência e Agrotecnologia, 34(4), 908-913. https://doi.org/10.1590/S1413-70542010000400016 DOI: https://doi.org/10.1590/S1413-70542010000400016

Philippsen, D. R., & Simonetti, A. P. M. M. (). Efeito de aplicação de diferentes doses de silícios aplicado via foliar na cultura da soja. Cultivando o Saber, 3(3), 40-47.

Rizwan, M., Ali, S., Rehman, M. Z., Malik, S., Adrees, M., Qayyum, M. F., Alamri, S. A., Alyemeni, M. N., & Ahmad, P. (2019). Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiologiae Plantarum, 41(3), 35. https://doi.org/10.1007/s11738-019-2828-7 DOI: https://doi.org/10.1007/s11738-019-2828-7

Rocha, G. C., Neto, A. R., Cruz, S. J., Campos, G. W. B., Castro, A. C. O., Simon, G. A. (2017). Qualidade fisiológica de sementes de soja tratados e armazenadas. Revista Científic@, 5(1), 50-65.

Rodrigues, F. A., Oliveira, L. A., Korndõrfer, A. P., & Korndõrfer, G. H. (2011). Silício: um elemento benéfico e importante para as plantas. Informações Agronômicas, 134, 14-20.

Rossetto, C. A. V., Fernandez, E. M., & Filho, J. M. (1995). Metodologias de ajuste do grau de umidade e comportamento das sementes de soja no teste de germinação. Revista Brasileira de Sementes, 17(2), 171-178. DOI: https://doi.org/10.17801/0101-3122/rbs.v17n2p171-178

Sharifi, P., Amirnia, R., & Bidabadi, S. S. (2022). Role of silicon im mediating heat shock tolerance in soybean. Journal of Crop Health, 74, 397-411. https://doi.org/10.1007/s10343-021-00617-8 DOI: https://doi.org/10.1007/s10343-021-00617-8

Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H., & Gong, H. (2014). Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry, 78, 27-36. https://doi.org/10.1016/j.plaphy.2014.02.009 DOI: https://doi.org/10.1016/j.plaphy.2014.02.009

Sousa, J. V., Rodrigues, C. R., Luz, J. M. Q., Carvalho, P. C., Rodrigues, T. M., & Brito, C. H. Silicato de potássio via foliar no milho: fotossíntese, crescimento e produtividade. Bioscience Journal, 26(4), 502-513. https://seer.ufu.br/index.php/biosciencejournal/article/view/7148/

Souza, J. P. F., Martins, G. L. M., Pereira, A. C., Binotti, F. F. S., & Maryyama, W. I. (2015). Efeito do silicato de cálcio e magnésio no crescimento de milho transgênico. Revista de Agricultura Neotropical, 2(3), 13-17. DOI: https://doi.org/10.32404/rean.v2i3.280

Teodoro, P. E., Ribeiro, L. P., Oliveira, E. P., Corrêa, C. C., & Torres, F. E. (2015). Acúmulo de massa seca na soja em resposta a aplicação foliar com silício sob condições de deficit hídrico. Bioscience Journal, 31(1), 161-170. http://hdl.handle.net/11449/129256 DOI: https://doi.org/10.14393/BJ-v31n1a2015-22283

Toledo, F. F., & Marcos Filho, J. (1977). Manual da sementes: tecnologia da produção. São Paulo: Agronômica Ceres, 218 p.

Tripathi, P., Na, C-I., & Kim, Y. (2021). Efect of silicon fertilizer treatment on nodule formation and yield in soybean (Glycine max L.). European Journal of Agronomy, 122, 126172. https://doi.org/10.1016/j.eja.2020.126172 DOI: https://doi.org/10.1016/j.eja.2020.126172

Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2015). Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry, 96, 189-198. https://doi.org/10.1016/j.plaphy.2015.07.026 DOI: https://doi.org/10.1016/j.plaphy.2015.07.026

Vieira, R., & Krzyzanowski, F. C. (1999). Teste de condutividade elétrica. In: Krzyzanowski, F. C., Vieira, R. D., & França Neto, J. B. (Eds.). Vigor de sementes: concentios e testes. Londrina: Abrates.

Vidigal, D. S., Lima, J. S., Bhering, M. C., & Dias, D. C. F. S. (2008). Teste de condutividade elétrica para sementes de pimenta. Revista Brasileira de Sementes, 30(1), 168-174. https://doi.org/10.1590/S0101-31222008000100021 DOI: https://doi.org/10.1590/S0101-31222008000100021

Zago, A. S., Silva, C. A. T., Silva, T. R. B., Viecelli, C. A., & Nolla, E. V. A. (2010). Efeito de doses de silício no desenvolvimento da soja. Cultivando o Saber, 3(2), 16-22.

Zelin, E., Bussolaro, I., & Simonetti, A. P. M. M. (2011). Aplicação de silício no controle de lagartas e produtividade da cultura da soja. Cultivando o Saber, 4(1), 171-180.

Yamaji, N., Chiba, Y., Mitani-Ueno, N., & Ma, J. F. (2012). Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiology, 160(3), 1491-1497.

https://doi.org/10.1104/pp.112.204578 DOI: https://doi.org/10.1104/pp.112.204578

Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L. R. (2020). Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defennse system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment, 738, 140240. https://doi.org/10.1016/j.scitotenv.2020.140240 DOI: https://doi.org/10.1016/j.scitotenv.2020.140240




How to Cite

Santos, J. E. D. dos, Menezes Filho, A. C. P. de, Melo, A. F., Sharma, P., & Ventura, M. V. A. (2024). Effect of potassium silicate on development and productivity in soybean [Glycine max (L.) Merrill] cultivars in an experimental cultivation area in the Brazilian Cerrado. Brazilian Journal of Science, 3(7), 76–88. https://doi.org/10.14295/bjs.v3i7.586



Agrarian and Biological Sciences