Allelopathy of the essential oil of Fortunella margarita (Lour.) Swingle) in the germination on Helianthus annuus L. and Hordeum vulgare L.

Authors

DOI:

https://doi.org/10.14295/bjs.v3i5.572

Keywords:

Fortunella genus, allelopathy, sunflower, D-Limonene, biological effects, germination delay

Abstract

Fortunella margarita known as ‘Kin-Kan or kumquat orange’ is a citrus species cultivated in South America with excellent adaptation to different climates, especially tropical. The fruits of F. margarita have a spectacular essential oil content. This study aimed to evaluate the allelopathic action of essential oil from ripe fruits of F. margarita in different concentrations on two large crops, sunflower (Helianthus annuus) and barley (Hordeum vulgare) in vitro. Ripe fruits of F. margarita were collected from an orchard in Rio Verde, Goiás, Brazil in January 2024. The skin of the fruits was removed and crushed to obtain the essential oil by Clevenger. The essential oil content obtained was expressed as a percentage (%). For the chemical profile, gas chromatography with sequential mass spectrometry (GC-MS) was used. For the allelopathic assay, varying concentrations of essential oil were produced. The allelopathic test was carried out in acrylic germination boxes and kept in a D.B.O. vegetation chamber. The results were expressed as percentage of germination µL mL-1. The radicle length was determined using a digital caliper and expressed in centimeters (cm). Seven major volatile compounds were obtained (D-Limonene 22%, β-Phellandrene 12%, β-Pinene 11%, Germacrene D 9%, Bicyclosexquiphellandrene 8%, Trans-Arbuscolene and α-Guaiene both with 5%). The essential oil demonstrated strong allelopathic activity on sunflower germination rates, especially for concentrations greater than 12.5-100 µL mL-1, between 54.40 and 12.80%. Barley seeds demonstrated resistance and a rate greater than 50% at the highest concentration (100 µL mL-1). Radicle length also showed a significant difference (P < 0.05) in all essential oil concentrations. Again, sunflower was strongly affected, with average primary roots between 0.98 and 0.11 cm and between 2.77 and 0.11 cm for barley. The essential oil from the ripe fruits of Fortunella margarita has an allelopathic action on germination and a toxic effect on the development of primary roots in sunflower and barley seeds.

References

Abrahim, D., Braguini, W. L., Kelmer-Bracht, A., & Ishii-Iwamoto, E. L. (2000). Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. Journal of Chemical Ecology, 26, 611-624. https://doi.org/10.1023/A:1005467903297 DOI: https://doi.org/10.1023/A:1005467903297

Alves, M. C. S., Filho, S. M., Innecco, R., & Torres, S. B. (2004). Alelopatia de extratos voláteis na germinação de sementes e no comprimento da raiz de alface. Pesquisa Agropecuária Brasileira, 39(11), 1083-1086. https://doi.org/10.1590/S0100-204X2004001100005 DOI: https://doi.org/10.1590/S0100-204X2004001100005

Anaya, A. L., Macías-Rubalcava, M., Cruz-Ortega, R., García-Santana, C., Sánchez-Monterrubio, P. N., Hernández-Bautista, B. E., & Mata, R. (2005). Allelochemicals from Stauranthus perforatus, a rutaceous tree of the Yucatan Peninsula, Mexico. Phytochemistry, 66(4), 487-494. https://doi.org/10.1016/j.phytochem.2004.12.028 DOI: https://doi.org/10.1016/j.phytochem.2004.12.028

Azirak, S., & Karaman, S. (2008). Allelopathic effect of some essential oils and components on germination of weed species. Acta Agricuturae Scandinavica, Section B – Soil & Plant Science, 58(1), 88-92. https://doi.org/10.1080/09064710701228353 DOI: https://doi.org/10.1080/09064710701228353

Barrales-Cureño, H. J., Herrera-Cabrera, B. E., Montiel-Montoya, J., López-Valdez, L. G., Slgado-Garciglia, R., Ocaño-Higuera, V. M., Sánchez-Herrera, L. M., Lucho-Constantino, G. G., & Zaragoza-Martinez, F. (2022). Metabolomics studies of allelopathy: a review. Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(1), 243-274. https://doi.org/10.15446/rcciquifa.v51n1.102693 DOI: https://doi.org/10.15446/rcciquifa.v51n1.102693

Bitencourt, G. A., Gonçalves, C. C. M., Rosa, A. G., Zanella, D. F. P., & Matias, R. (2021). Fitoquímica e alelopatia de Aroeira-vermelha (Schinus terebinthifolius Raddi) na germinação de sementes. Ensaios e Ciência, 25(1), 02-08. https://doi.org/10.17921/1415-6938.2021v25n1p02-08 DOI: https://doi.org/10.17921/1415-6938.2021v25n1p02-08

Chambre, D. R., Moisa, C., Lupitu, A., Copolovici, L., Pop, G., & Copolovici, D-M. (2020). Chemical composition, antioxidant capacity, and thermal behavior of Satureja hortensis essential oil. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-78263-9 DOI: https://doi.org/10.1038/s41598-020-78263-9

Chu, C., Mortimer, P. E., Wang, H., Wang, Y., Liu, X., & Yu, S. (2014). Allelopathic effects of Eucalyptus on native and introduced tree species. Forest Ecology and Management, 323, 79-84. https://doi.org/10.1016/j.foreco.2014.03.004 DOI: https://doi.org/10.1016/j.foreco.2014.03.004

Dias, G. M. G., Ferreira, D. G. B., Anjos, D. C., Mendes, I. P. B., & Guimarães, M. A. (2022). Silicon accumulation in bioenergetic sunflower germination. Scientia Agraria Paranaensis, 21(2), 151-157. https://doi.org/10.18188/sap.v21i2.28947

Farooq, M., Jabran, K., Cheena, Z. A., Wahid, A., & Siddique, K. H. M. (2011). The role of allelopathy in agricultural pest management. Pest Management Science, 67, 494-506. DOI: https://doi.org/10.1002/ps.2091

Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450

Fitsiou, E., Mitropoulou, G., Spyridopoulou, K., Tiptiri-Kourpeti, A., Vamvakias, M., Bardouki, H., Panayiotidis, M. I., Galanis, A., Kourkoutas, Y., Chlichlia, K., & Pappa, A. (2016). Phytochemical profile and evaluation of the biological activities of essential oils derived from the Greek aromatic plant species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules, 21(8), 1069. https://doi.org/10.3390/molecules21081069 DOI: https://doi.org/10.3390/molecules21081069

Ganghi, K., Khan, S., Patrikar, M., Markad, A., Kumar, N., Choudhari, A., Sagar, P., & Indurkar, S. (2021). Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environment Challenges, 4, 100149. https://doi.org/10.1016/j.envc.2021.100149 DOI: https://doi.org/10.1016/j.envc.2021.100149

Haddacek, F. (2002). Secondary metabolites as plant traits: current assessment and future perspectives. Critical Review in Plant Sciences, 21, 273-322. https://doi.org/10.1080/0735-260291044269 DOI: https://doi.org/10.1080/0735-260291044269

Inderjit, D. (2003). Ecophysiological asoects of allelopathy. Planta, 217, 529-539. https://doi.org/10.1007/s00425-003-1054-z DOI: https://doi.org/10.1007/s00425-003-1054-z

Inderjit, S. J. C., & Olofsdotter, M. (2002). Joint action of phenolic acid mistures and its significance in allelopathy research. Physiologia plantarum, 114, 422-428. https://doi.org/10.1034/j.1399-3054.2002.1140312.x DOI: https://doi.org/10.1034/j.1399-3054.2002.1140312.x

Kaya, M. D., Ozcan, F., Day, S., Bayramin, S., Akdoğan, G., & Ipek, A. (2013). Allelopathic role of essential oils in sunflower stubble on germination and seedling growth of the subsequent crop. International Journal of Agriculture & Biology, 15, 337-341.

Kennedy, J. E., Davé, P. C., Harbin, L. N., & Setzer, W. N. (2011). Allelopathic potential of Sassafras albidum and Pinus taeda essential oil. Allelopathy Journal, 27(1), 111.

Kong, Q., Zhou, L., Wang, X., Luo, S., Li, J., Xiao, H., Zhang, X., Xiang, T., Feng, S., Chen, T., Yuan, M., & Ding, C. (2021). Chemical composition and allelopathic effect of essential oil of Litsea pungens. Agronomy, 11(6), 1115. https://doi.org/10.3390/agronomy11061115 DOI: https://doi.org/10.3390/agronomy11061115

Lakache, Z., Hacib, H., Aliboudhar, H., Toumi, M., Mahdid, M., Lamrani, N., Tounsi, H., & Kameli, A. (2022). Chemical composition, antidiabetic, anti-inflammatory, antioxidant and toxicity activities, of the essential oil of Fortunella margarita peels. Journal of Biological Research, 95(2), 10641. https://doi.org/10.4081/jbr.2022.10641 DOI: https://doi.org/10.4081/jbr.2022.10641

Mathiassen, S. K., Boutin, C., Strandberg, B., Carpenter, D., & Damgaard, C. (2021). Effect of low doses of herbicides on different endpoints in the life cycle of nontarget terrestrial plants. Environmental Toxicology and Chemistry, 40(5), 1389-1404. https://doi.org/10.1002/etc.4992 DOI: https://doi.org/10.1002/etc.4992

Menezes Filho, A. C. P., & Castro, C. F. S. (2019). Caracterização química e atividade antifúngica dos óleos essenciais de laranja-kinkan (Fortunella margarita (Lour.) Swingle). Folia Amazónica, 28(2), 185-198. https://doi.org/10.24841/fa.v28i2.482 DOI: https://doi.org/10.24841/fa.v28i2.482

Mitroloulou, G., Bardouki, H., Vamvakias, M., Panas, P., Paraskevas, P., & Kourkoutas, Y. (2022). Assessment of antimicrobial efficiency of Pistacia lentiscus and Fortunella margarita essential oil against spoilage and pathogenic microbes in ice cream and fruit juices. Microbiology Research, 13(3), 667-680. https://doi.org/10.3390/microbiolres13030048 DOI: https://doi.org/10.3390/microbiolres13030048

Morais, T. C., Dias, D. C. F. S., Pinheiro, D. T., Gama, G. F. V., & Silva, L. J. (2021). Physiological quality and antioxidant enzymatic action in sunflower seeds exposed to deterioration. Revista Caatinga, 34(3), 570-579. http://dx.doi.org/10.1590/1983-21252021v34n308rc DOI: https://doi.org/10.1590/1983-21252021v34n308rc

Oliveira, B. S., Pinheiro, C. G., Bianchini, N. H., Batista, B. F., Pavlack, A. S., & Heinzmann, B. M. (2021). Caracterização química e atividade alelopática do óleo essencial de folhas de Blepharocalyx salicifolius. Pesquisa Florestal Brasileira, 41, e201902042, 1-7. https://doi.org/10.4336/2021.pfb.41e201902042 DOI: https://doi.org/10.4336/2021.pfb.41e201902042

Paw, M., Begum, T., Gogoi, R., Pandey, S. K., & Lal, M. (2020). Chemical composition of Citrus limon L. Burmf peel essential oil from East India. Journal of Essential Oil Bearing Plants, 23(2), 337-344. https://doi.org/10.1080/0972060X.2020.1757514 DOI: https://doi.org/10.1080/0972060X.2020.1757514

Peng, L-W., Sheu, M-J., Lin, L-Y., Wu, C-T., Chiang, H-M., Lin, W-H., Lee, M-C., & Chen, H-C. (2013). Effect of heat treatments on the essential oils of kumquant (Fortunella margarita Swingle). Food Chemistry, 136, 532-537. https://doi.org/10.1016/j.foodchem.2012.08.014 DOI: https://doi.org/10.1016/j.foodchem.2012.08.014

Pessenti, I. L., Torres, A. L., Martins, W. S., & Macoski, N. (2021). Manejo nutricional com micronutrientes e seus efeitos sobre os components de produtividade na cevada. Research, Society and Development, 10(3), e30910313225. http://dx.doi.org/10.33448/rsd-v10i3.13225 DOI: https://doi.org/10.33448/rsd-v10i3.13225

Rosado, L. D. S., Rodrigues, H. C. A., Pinto, J. E. B. P., Custódio, T. N., Pinto, L. B. B., & Bertolucci, S. K. V. (2009). Alelopatia do extrato e do óleo essencial de folhas do manjericão “maria bonita” na germinação de alfaçe, tomate e melissa. Revista Brasileira de Plantas Medicinais, 11(4), 422-428. https://doi.org/10.1590/S1516-05722009000400010 DOI: https://doi.org/10.1590/S1516-05722009000400010

Rossetto, C. A. V., Medici, L. O., Morais, C. S. B., Martins, R. C. F., & Carvalho, D. F. (2021). Seed germination and performance of sunflower seedlings submitted to produced water. Ciência e Agrotecnologia, 45, e010521. http://dx.doi.org/10.1590/1413-7054202145010521 DOI: https://doi.org/10.1590/1413-7054202145010521

Santiago, S. A., Silva, A. A. O., Rodrigues, E., Antomiazzi, N., Bach, E. E. (2002). Efeito alelopático do extrato de Impatiens walleriana sobre sementes de cevada. ConScientiae, 1, 17-20. http://www.redalyc.org/articulo.oa?id=92900104 DOI: https://doi.org/10.5585/conssaude.v1i0.160

Sánchez-Muñoz, B. A. S., Aguilar, M. I., King-Díaz, B., Rivero, J. F., & Lotina-Hennsen, B. (2012). The sesquiterpenes β-caryophyllene and caryophyllene oxide isolated from Senecio salignus act as phytogrowth and photosynthesis inhibitors. Molecules, 17, 1437-1447. https://doi.org/10.3390/molecules17021437 DOI: https://doi.org/10.3390/molecules17021437

Sharif-Rad, J., Sureda, A., Tenore, G. C., Daglia, M., Sharifi-Rad, M., Valussi, M., Tundis, R., Sharifi-Rad, M., Loizzo, M. R., Ademiluyi, A. O., Sharifi-Rad, R., Ayatollahi, S. A., 7 Iriti, M. (2017). Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules, 22(1), 1-55. https://doi.org/10.3390/molecules22010070 DOI: https://doi.org/10.3390/molecules22010070

Sicari, V., & Poiana, M. (2017). Comparison of the volatile component of the essential oil of kumquant (Fortunella margarita Swingle) extracted by supercritical carbon dioxide, hydrodistillation and conventional solvent extraction. Journal of Essential Oil Bearing Plants, 20(1), 87-94. https://doi.org/10.1080/0972060X.2017.1282841 DOI: https://doi.org/10.1080/0972060X.2017.1282841

Silva, A. G., & Carvalho, R. I. N. (2009). Efeito alelopático de extratos de carqueja (Baccharis trimera) e confrei (Symphytum officinale) em sementes e plântulas de girassol. Revista Acadêmica, Ciências Animal, 7(1), 23-32. https://doi.org/10.7213/cienciaanimal.v7i1.8864 DOI: https://doi.org/10.7213/cienciaanimal.v7i1.8864

Soni, S., Parekh, M. Y., Jacob, J. A., Mack, J. P., & Lobo, D. E. (2022). Kumquat essential oil decreases proliferation and activates JNK signaling and apoptosis in HT-1080 fibrosarcoma cells. Molecular and Cellular Biochemistry, 477, 445-453. https://doi.org/10.1007/s11010-021-04291-2 DOI: https://doi.org/10.1007/s11010-021-04291-2

Sutour, S., Luro, F., Bradesi, P., Casanova, J., & Tomi, F. (2016). Chemical composition of the fruit oils of five Fortunella species grown in the same pedoclimatic conditions in Corsica (France). Natural Products Communication, 11, 259-262. DOI: https://doi.org/10.1177/1934578X1601100231

Suttle, J. C., Olson, L. L., & Lulai, E. C. (2016). The involvement of gibberellins in 1,8-cineole-mediated inhibition of sprout growth in russet burbank tubers. American Journal of Potato Research, 93, 72-79. https://doi.org/10.1007/s12230-015-9490-4 DOI: https://doi.org/10.1007/s12230-015-9490-4

Taiz, L., & Zeiger, E. (2004). Fisiologia vegetal. Porto Alegre: Artmed, 719 p.

Yoshimura, H., Sawai, Y., Tamotsu, S., & Sakai, A (2011), 1,8-Cineole inhibits both proliferation and elongation of by-2 cultured tobacco cells. Journal of Chemical Ecology, 37, 320-328. https://doi.org/10.1007/s10886-011-9919-2 DOI: https://doi.org/10.1007/s10886-011-9919-2

Zahed, N., Hosni, K., Brahim, N. B., Kallel, M., & Sebei, H. (2010). Allelopathic effect of Schinus molle essential oils on wheat germination. Acta Physiologiae Plantarum, 32, 1221-1227. https://doi.org/10.1007/s11738-010-0492-z DOI: https://doi.org/10.1007/s11738-010-0492-z

Zhao, J., Yang, L., Zhou, L., Bai, Y., Hou, P., Xu, Q., Yang, W., & Zuo, Z. (2016). Inhibitory effects of eucalyptol and limonene on the photosynthetic abilities in Chlorella vulgaris (Chlorophyceae). Phycologia, 55(6), 696-702. http://dx.doi.org/10.2216/16-38.1 DOI: https://doi.org/10.2216/16-38.1

Zheljazkov, V. D., Jeliaskova, E. A., & Astatkie, T. (2021). Allelopathic effects of essential oils on seed germination of barley and wheat. Plants, 10(12), 2728. https://doi.org/10.3390/plants10122728 DOI: https://doi.org/10.3390/plants10122728

Downloads

Published

2024-04-29

How to Cite

Cavalheiro, B. M., & Rocha, A. C. da. (2024). Allelopathy of the essential oil of Fortunella margarita (Lour.) Swingle) in the germination on Helianthus annuus L. and Hordeum vulgare L. Brazilian Journal of Science, 3(5), 65–76. https://doi.org/10.14295/bjs.v3i5.572

Issue

Section

Agrarian and Biological Sciences