Effect of plant spacing on pigeonpea grain yield in Northern Uganda


  • Alfred Kumakech National Agricultural Research Organization, Ngetta Zonal Agricultural Research and Development Institute, P. O Box 52, Lira-Uganda, Uganda https://orcid.org/0000-0002-5488-6519
  • Tonny Opio National Agricultural Research Organization, Ngetta Zonal Agricultural Research and Development Institute, P. O Box 52, Lira-Uganda, Uganda https://orcid.org/0000-0002-3843-7246
  • Frank Laban Turyagyenda National Agricultural Research Organization, Ngetta Zonal Agricultural Research and Development Institute, P. O Box 52, Lira-Uganda, Uganda https://orcid.org/0000-0003-4714-2463




pigeonpea, plant spacing, grain yield


The aim of crop production is to achieve the highest possible yield per unit area. One way of increasing productivity per unit area is through plant spacing optimization. The effect of plant spacing (90 cm x 60 cm, 150 cm x 120 cm and 150 cm x 180 cm) on yield of three pigeonpea genotypes (KAT 60/8, ICEAP 00540 and ICEAP 00554) was investigated on-station in a small-plot field experiments in 2018. Significant differences were recorded in grain yield of all the three genotypes. The highest yield for all the three genotypes was recorded for row spacing of 90 cm and inter plant spacing of 60 cm, and the lowest for row spacing of 150 cm and inter plant spacing of 180 cm. Plant spacing effect on other yield parameters (number of pods per plant and 100 seed weight) were not significant. Similar effects were recorded for plant growth parameters (plant height and number of primary branches). Thus, it can be concluded that row spacing of 90 cm and interplant spacing of 60cm is appropriate for pigeonpea grain production in Uganda.


Behera, S. K., Shukla, A. K., Tiwari, P. K., Tripathi, A., Singh, P., Trivedi, V., Patra, A. K., & Das, S. (2020). Classification of pigeonpea (Cajanus cajan (L.) millsp.) genotypes for zinc efficiency. Plants, 9(952), 1-14. https://doi.org/10.3390/plants9080952. DOI: https://doi.org/10.3390/plants9080952

Drummond, R. S. M., Janssen, B. J., Luo, Z., Oplaat, C., Ledger, S. E., Wohlers, M. W., & Snowden, K. C. (2015). Environmental control of branching in Petunia. Plant Physiology, 168, 735-751. https://doi. org/10.1104/pp.15.00486. DOI: https://doi.org/10.1104/pp.15.00486

Fatokimi, E. P., & Tanimonure, V. A. (2021). Analysis of the current situation and future outlooks for pideon pea (Cajanus cajan) production on Oyo state, Nigeria: A Markov chain model approach. Journal of Agriculture and Food Research, 6, 100218. https://doi.org/10.1016/j.jafr.2021.100218 DOI: https://doi.org/10.1016/j.jafr.2021.100218

Heitholt, J. J., & Sassenrath-Cole, G. F. (2010). Inter-plant competition: Growth response to plant density and row spacing. In: Stewart, J. M., Oosterhuis, D. M., Heitholt., J. J., & Mauney, J. R. (Eds.), Physiology of cotton, 179-186), Springer Science. https://doi.org/10.1007/978- 90-481-3195-2. DOI: https://doi.org/10.1007/978-90-481-3195-2_17

Katayama, K., Ito, O., Adu-Gyamfi, J. J., Rao, T. P., Dacanay, E. V., & Yoneyama, T. (1999). Effects of NPK fertilizer combinations on yield and nitrogen balance in sorghum or pigeonpea on a vertisol in the semi-arid tropics. Soil Science and Plant Nutrition, 45(1), 143-150. https://doi.org/10.1080/00380768.1999.10409330 DOI: https://doi.org/10.1080/00380768.1999.10409330

Kumar, C. V. S., Naik, S. J. S., Nidhi Mohan, R. K. S., & Varshney, R. K. (2017). Botanical description of pigeon pea (Cajanus cajan (L.) Millsp.). In: Vashney, R. K., Saxena, R. K., & Jackson, S. A. (Eds.), Pigeon pea genome, Compendium of plant Genomes, 17-29, 1st, Springer Inernational Publishing. https://doi.org/10.1007/978-3-319- 63797-6. DOI: https://doi.org/10.1007/978-3-319-63797-6_3

Mekonen, T., Tolera, A., Nurfeta, A., Bradford, B., & Mekasha, A. (2022). Location and plant spacing affect biomass yield and nutritional value of pigeon pea forage. Agronomy Journal, 114, 228–247. https://doi.org/10.1002/agj2.20803. DOI: https://doi.org/10.1002/agj2.20803

Meena, B. K., Hulihalli, U. K., & Sumeriya H. K. (2015). Growth, yield attributed and yield of medium duration pigeon pea hybrid ICPH- 2671 as influenced by fertility levels and planting geometry. Legume Research, 38(6), 816-820. http://dx.doi.org/10.18805/lr.v38i6.6729 DOI: https://doi.org/10.18805/lr.v38i6.6729

Mergeai, G., Kimani, P., Mwang’ombe, A., Olubayo, F., Smith, C., Audi, P., Baudoin, J-P., & Le Roi, A. (2001). Survey of pigeonpea production systems, utilization and marketing in semi-arid lands of Kenya. Biotechnology Agronomy, Society and Environment, 5(3), 145-153. https://popups.uliege.be/1780-4507/index.php?id=14793

Mishra, S., Singh, R., Kumar, R., Kalia, A., & Panigrahy, S. R. (2017). Impact of climate change on pigeon pea. Economic Affairs, 62(3), 455-457. https://doi.org/10.5958/0976-4666.2017.00057.2. DOI: https://doi.org/10.5958/0976-4666.2017.00057.2

Namuyiga, D. B., Stellmacher, T., Borgemeister, C., & Groot, J. C. J. (2022). A typology and preferences for pigeon pea in smallholder mixed farming systems in Uganda. Agriculture, 12(8), 1186. https://doi.org/10.3390/agriculture12081186 DOI: https://doi.org/10.3390/agriculture12081186

Rachaputi, R. C., Bedane, G. M., Broad, I. J., & Deifel, K. S. (2018). Genotype, row spacing and environment interaction for productivity and grain quality of pigeonpea (Cajanus cajan) in subtropical Australia. Biosciences, Biotechnology Research Asia, 15(1), 27-38. https://doi.org/10.13005/bbra/2605 DOI: https://doi.org/10.13005/bbra/2605

Reta-Sánchez, D. G., Hernández-Dozal, B., Cueto-Wong, J. A., & Olague, J. (2010). Kenaf forage yield and quality as affected. Crop Science, 50, 744-750. https://doi.org/10.2135/cropsci2009.03.0150 DOI: https://doi.org/10.2135/cropsci2009.03.0150

Singh, D., Mathimaran, N., Boller, T., & Kahmen, A. (2020). Deeprooted pigeon pea promotes the water relations and survival of shallow-rooted finger millet during drought: Despite strong competitive interactions at ambient water availability. PLOS ONE, 15(2), 1-22. https://doi.org/10.1371/journal.pone.0228993. DOI: https://doi.org/10.1371/journal.pone.0228993

Singh, S., Thenua, O. V. S., & Chauhan, R. S. (2014). Effect of inorganic and organic manures and row spacing on growth, yield and quality of pigeon pea (Cajanus cajan L.). Progressive Research, 9, 822-825.

Swathi, Y. M., Srinivasa Reddy, M., Prabhakara Reddy, G., & Kavitha (2017). Influence of density, planting patterns and mulching on yield of drip irrigated pigeon pea [Cajanus cajan (L.) Millsp]. Indian Journal of Agricultural Research, 51(6), 611-614. http://dx.doi.org/10.18805/IJARe.A-4849 DOI: https://doi.org/10.18805/IJARe.A-4849

Worku, W., & Demisie, W. (2012). Plant density of pigeon pea in southern Ethiopia. Journal of Agronomy, 11(4), 85-93. DOI: https://doi.org/10.3923/ja.2012.85.93

Zapata, M. V., Isaza, J. G. L., Betancur, L. F. R., Lopera, S. A., & Sierra, M. M. (2017). Plant growth evaluation of Cajanus cajan (L.) Millsp., Canavalia ensiformis (L.) DC. and Cratylia argentea (Desvaux) O. Kuntze., in soils degraded by sand and gravel extraction. Acta Agronomica, 66(4), 580-587. https://doi.org/10.15446/acag.v66n4.61203. DOI: https://doi.org/10.15446/acag.v66n4.61203

Zhou, X. B., Yang, G. M., Sun, S. J., & Chen, Y. H. (2010). Plant and row spacing effects on soil water and yield of rainfed summer soybean in the northern China. Plant Soil Environment, 56(1), 1-7. https://doi. org/10.17221/73/2009-PSE. DOI: https://doi.org/10.17221/73/2009-PSE




How to Cite

Kumakech, A., Opio, T., & Turyagyenda, F. L. (2024). Effect of plant spacing on pigeonpea grain yield in Northern Uganda. Brazilian Journal of Science, 3(4), 41–47. https://doi.org/10.14295/bjs.v3i4.548



Agrarian and Biological Sciences