Purification and characterization of lipase from a new strain Staphylococcus argenteus MG2 (MTCC 12820)





Staphylococcus argenteus MG2, lipase, purification, characterization


The lipase enzyme was isolated and purified from Staphylococcus argenteus MG2 (MTCC 12820) to homogeneity using ammonium sulphate precipitation followed by chromatographic techniques. This process resulted in a purification factor of 40.96-fold and a 26.25% recovery with a specific activity of 744.68 U mg-1. The molecular weight of the purified lipase was determined by SDS-PAGE to be 45 kDa. The Km and Vmax values of the purified lipase were calculated to be 4.95 mM and 79.36 µmol/min/mg-1, respectively. The maximum lipase activity was observed at pH 7.0 and 30 ºC with 100% stability, and it was also found to be stable in a broad range of pH (5-12) and temperature (30-90 ºC). The enzymatic activity of this Staphylococcal lipase was increased by Ca2+ to 105.71% at a concentration of 1 mM CaCl2. Additionally, it exhibited marked stability and activity in organic solvents. In the presence of 1% SDS surfactant, it retained 85.16% residual activity, while the metal chelator EDTA (inhibitor) reduced the lipase activity to 83.87% residual activity at a concentration of 1% w/v. This alkali-stable and thermo-stable lipase can be exploited by extending its use in the preparation of detergents and in various industrial and biotechnological applications.


Aires-Barros, M. R., Taipa, M. A., & Cabral, J. M. S. (1994). Isolation and purification of lipases. In: Lipases: their structure, biochemistry and application. Great Britain: Cambridge University Press, Eds. Wooley, P., & Petersen, S. B., 234-270 p.

Bacha, A. B., Al-Assaf, A., Moubayed, N. M., & Abid, I. (2018). Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations. Saudi Journal of Biological Sciences, 25(3), 409-417. https://doi.org/10.1016%2Fj.sjbs.2016.10.006

Beisson, F., Tiss, A., Riviere, C., & Verger, R. (2000). Methods for lipase detection and assay: a critical review. European Journal of Lipid Science and Technology, 102, 133-153. https://doi.org/10.1002/(SICI)1438-9312(200002)102:2%3C133::AID-EJLT133%3E3.0.CO;2-X

Brune, A. K., & Gotz, F. (1992). In: Microbial degradation of natural products. (ed. Winkelmann, G). VCH, Weinheim, 243-263 p.

Castro-Ochoa, L. D., Rodriguez-Gomez, C., Valerio-Alfaro, G., & Ros, R. O. (2005). Screening, purification and characterization of the thermo alkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology, 37(6), 648-654. https://doi.org/10.1016/j.enzmictec.2005.06.003

Chartrain, M., Katz, L., Marcin, C., Thien, M., Smith, S., Fisher, F., Goklen, K., Salmon, P., Brix, T., Price, K., & Greasham, R. (1993). Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001. Enzyme and Microbial Technology, 15(7), 575-580. https://doi.org/10.1016/0141-0229(93)90019-X

Chen, S. J., Cheng, C. Y., & Chen, T. L. (1998). Production of an alkaline lipase by Acinetobacter radioresistens. Journal of Fermentation and Bioengineering, 86(3), 308-312. https://doi.org/10.1016/S0922-338X(98)80135-9

Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S., & Sayadi, S. (2011). A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids in Health and Disease, 10, 1-8. https://doi.org/10.1186/1476-511X-10-221

Dharmsthiti, S., Pratuangdejkul, J., Theeragool, G., & Luchai, S. (1998). Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. The Journal of General and Applied Microbiology, 44(2), 139-145. https://doi.org/10.2323/jgam.44.139

Farrell, A. M., Foster, T. J., & Holland, K. T. (1993). Molecular analysis and expression of the lipase of Staphylococcus epidermidis. Microbiology, 139(2), 267-277. https://doi.org/10.1099/00221287-139-2-267

Ghori, M. I., Iqbal, M. J., & Hameed, A. (2011). Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Brazilian Journal of Microbiology, 42(1), 1-11. https://doi.org/10.1590%2FS1517-83822011000100003

Godfredson, S. E. (1990). In: Microbial enzymes and biotechnology. (eds Fogarty WM and Kelly ET). Elsevier. Applied Sciences, The Netherlands, 255-273 p.

Golani, M., Hajela, K., & Pandey, G. P. (2019). Isolation and identification of a novel lipase producing Staphylococcus argenteus MG2 bacterium from oil spilled soil. International Journal of Advance and Innovative Research, 6(1), 20-30. https://iaraedu.com/about-journal/ijair-volume-6-issue-1-xiv-january-march-2019.php

Gotor, V. (2002). Lipases and (R)-oxynitrilases: useful tools in organic synthesis. Journal of Biotechnology, 96(1), 35-42. https://doi.org/10.1016/s0168-1656(02)00035-4

Gotz, F., Popp, F., Korn, E., & Schleifer, K. H. (1985). Complete nucleotide sequence of the lipase gene from Staphylococcus hyicus cloned in Staphylococcus carnosus. Nucleic Acids Research, 13(16), 5895-5906. https://doi.org/10.1093/nar/13.16.5895

Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89(1), 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6

Handelsman, T., & Shoham, Y. (1994). Production and characterization of an extracellular thermostable lipase from a thermophilic Bacillus sp. The Journal of General and Applied Microbiology, 40(5), 435-443. https://doi.org/10.2323/jgam.40.435

Hiol, A., Jonzo, M. D., Rugani, N., Druet, D., Sarda, L., & Comeau, L. C. (2000). Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microbial Technology, 26(5-6), 421-430. https://doi.org/10.1016/s0141-0229(99)00173-8

Horchani, H., Mosbah, H., Salem, N.B., Gargouri, Y., & Sayari, A. (2009). Biochemical and molecular characterization of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain. Journal of Molecular Catalysis B: Enzymatic, 56(4), 237-245. http://dx.doi.org/10.1016/j.molcatb.2008.05.011

Illanes, A. (1999). Stability of biocatalysts. Electronic Journal of Biotechnology, 2(1), 7-15. http://dx.doi.org/10.4067/S0717-34581999000100001

Jaeger, K E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Reviews in Microbiology, 53(1), 315-351. https://doi.org/10.1146/annurev.micro.53.1.315

Jaeger, K-E., Ransac, S., Dijkstra, B.W., Colson, C., Heuvel, M., & Van, M. O. (1994). Bacterial lipases. FEMS Microbiol Reviews, 15, 29-63. https://doi.org/10.1111/j.1574-6976.1994.tb00121.x

Junxin, Z., Maomao, M., Zheling, Z., Ping, Y., Deming, G. & Shuguang, D. (2021). Production, purification and biochemical characterization of a novel lipase from a newly identified lipolytic bacterium Staphylococcus caprae NCU S6. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 249-257. https://doi.org/10.1080/14756366.2020.1861607

Kanwar, L., Gogoi, B. K., & Goswami, P. (2002). Production of a Pseudomonas lipase in n-alkane substrate and its isolation using an improved ammonium sulfate precipitation technique. Bioresource Technology, 84(3), 207-211. https://doi.org/10.1016/s0960-8524(02)00061-5

Kim, S. S., E. K., & Rhee, J. S. (1996). Effects of growth rate on the production of Pseudomonas fluorescens lipase during the fed-batch cultivation of Escherichia coli. Biotechnology Progress, 12(5), 718-722. https://doi.org/10.1021/bp960047h

Kulkarni, N., & Gadre, R.V. (2002). Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. Journal of Industrial Microbiology and Biotechnology, 28, 344-348. https://doi.org/10.1038/sj/jim/7000254

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. https://doi.org/10.1038/227680a0

Lee, C. Y., & Iandolo, J. J. (1986). Lysogenic conversion of Staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. Journal of Bacteriology, 166(2), 385-391. https://doi.org/10.1128/jb.166.2.385-391.1986

Linefield, W. M., Barauskas, R. A., Siviri, L., Serota, S., & Steveson, S. W. (1990). Enzymatic fat hydrolysis and synthesis. Journal of the Amirican Oil Chemists’ Society, 61, 191-195. https://doi.org/10.1007/BF02678767

Longshaw, C. M., Farrell, A. M., Wright, J. D., & Holland, K. T. (2000). Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. Microbiology, 146(6), 1419-1427. https://doi.org/10.1099/00221287-146-6-1419

Macedo, G. A., Park, Y. K., & Pastore, G. M. (1997). Partial purification and characterization of an extracellular lipase from a newly isolated strain of Geotrichum sp. Brazilian Journal of Microbiology, 39, 687-692.

Mosbah, H., Sayari, A., Mejdoub, H., Dhouib, H., & Gargouri, Y. T. (2005). Biochemical and molecular characterization of Staphylococcus xylosus lipase. Biochimica et Biophysica Acta, 1723, 282-291. https://doi.org/10.1016/j.bbagen.2005.03.006

Nawani, N., & Kaur, J. (2000). Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp.J33. Molecular and Cellular Biochemistry, 206, 91-96. https://doi.org/10.1023/a:1007047328301

Nishio, T., Chikano, T., & Kamimura, M. (1987). Purification and some properties of lipase produced by Pseudomonas fragi22.39 B. Agricultural and Biological Chemistry, 51(1), 181-187. https://doi.org/10.1080/00021369.1987.10867979

Oh, B. C., Kim, H. K., Lee, J. K., Kang, S. C., & Oh, T. K. (1999). Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiology Letters, 179(2), 385-392. https://doi.org/10.1111/j.1574-6968.1999.tb08753.x

Pandey, A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., & Soccol, V. T. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29(2), 119-131. PMID: 10075908 .

Rathi, P., Saxena, R. K., & Gupta, R. (2001). A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochemistry, 37(2), 187-192. http://dx.doi.org/10.1016/S0032-9592(01)00200-X

Saxena, R. K., Ghosh, P. K., Gupta, R., Davidson, W. S., Bradoo, S., & Gulati, R. (1999). Microbial lipases: Potential biocatalysts for the future industry. Current Science, 77(1), 101-115.

Sayari, A., Agrebi, N., Jaoua, S., & Gargouri, Y. (2001). Biochemical and molecular characterization of Staphylococcus simulans lipase. Biochimie, 83(9), 863-871. https://doi.org/10.1016/s0300-9084(01)01327-x

Sigman, D. S., & Mooser, G. (1975). Chemical studies of enzyme active sites. Annual Review of Biochemistry, 44, 889-931. https://doi.org/10.1146/annurev.bi.44.070175.004325 .

Simons, J. W. F., van Kampen, M. D., Riel, S., Gotz, F., Egmond, M. R., & Verheij, H. M. (1998). Cloning, purification and characterization of the lipase from Staphylococcus epidermidis: Comparison of the substrate selectivity with those of other microbial lipases. European Journal of Biochemistry, 253(3), 675-683. https://doi.org/10.1046/j.1432-1327.1998.2530675.x

Sirisha, E., Lakshmi, P., & Lakshmi, N. M. (2017). Purification and characterization of extracellular lipase from Staphylococcus epidemidis (MTCC10656). Journal of Applied Pharmaceutical Science, 7(01), 57-63. http://dx.doi.org/10.7324/JAPS.2017.70108

Talon, R., Dublet, N., Montel, M. C., & Cantonnet, M. (1995). Purification and characterization of extracellular Staphylococcus warneri lipase. Current Microbiology, 30, 11-16. https://doi.org/10.1007/BF00294517

Talon, R., Marie-Christine, M., & Jean- Louis, B. (1996). Production of flavor esters by lipases of Staphylococcus warneri and Staphylococcus xylosus. Enzyme and Microbial Technology, 19(8), 620-622. https://doi.org/10.1016/S0141-0229(96)00075-0

Tiesinga, J. J. W., Pouderoyen, V. G., Nardini, M., Ransac, S., & Dijkstra, B. W. (2007). Structural basis of phospholipase activity of Staphylococcus hyicus lipase. Journal of Molecular Biology, 371(2), 447-456. https://doi.org/10.1016/j.jmb.2007.05.041

Van Oort, M. G., Deveer, A. M., Dijkman, R., Tjeenk, M. L., Verheij, H. M., De Haas, G. H., Wenzig, E., & Goetz, F. (1989). Purification and substrate specificity of Staphylococcus hyicus lipase. Biochemistry, 28(24), 9278-9285. https://doi.org/10.1021/bi00450a007

VanKampen, M. D., Rosenstein, R., Gotz, F., & Egmond, M. R. (2001). Cloning, purification and characterization of Staphylococcus warneri lipase 2. Biochemica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, 1544(1-2), 229-241. https://doi.org/10.1016/s0167-4838(00)00224-7

Verma, M., Azmi, W., & Kanwar, S. (2008). Microbial lipases: at the interface of aqueous and non-aqueous media: a review. Acta Microbiologica et Immunologica Hungarica, 55(3), 265-294. https://doi.org/10.1556/amicr.55.2008.3.1

Woolley, P. (1994). Lipases; their structure, biochemistry and application. In: Sequence analysis of lipases, esterases and related proteins, Cambridge University Press, 27-28 p. https://cir.nii.ac.jp/crid/1570291224803998080




How to Cite

Golani, M., & Hajela, K. (2024). Purification and characterization of lipase from a new strain Staphylococcus argenteus MG2 (MTCC 12820). Brazilian Journal of Science, 3(5), 1–18. https://doi.org/10.14295/bjs.v3i5.547



Agrarian and Biological Sciences