Biological activity of a benzene sulfonamide on perfusion pressure and coronary resistance using an isolated rat heart model

Authors

  • Magdalena Alvarez-Ramirez Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México https://orcid.org/0000-0003-0046-4342
  • Lauro Figueroa-Valverde Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0001-6801-6402
  • Marcela Rosas-Nexticapa Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México https://orcid.org/0000-0001-7119-4728
  • Maria López-Ramos Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0001-8457-0243
  • Maria Virginia Mateu-Armad Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México https://orcid.org/0000-0003-3283-0001
  • Eli Alejandra Garcimarrero-Espino Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México https://orcid.org/0000-0002-4673-7804
  • Lenin Hau-Heredia Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0002-3174-4112
  • Regina Cauich-Carrillo University Autonomous of Quintana Roo State, Campus Chetumal, Av Erik Paolo Martinez s/n esq. Av. 4 de marzo, Col. Magisteterial, C.P. 77039, México https://orcid.org/0000-0002-7166-5048
  • Julliete Mijangos-Sanchez Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0003-1178-7112

DOI:

https://doi.org/10.14295/bjs.v3i4.540

Keywords:

benzenesulfonamide, derivatives, perfusion pressure, docking

Abstract

There are studies which indicate that some sulfonamide derivatives can produce changes in the cardiovascular system; however, their biological activity on perfusion presure and coronary resistance is not clear. The aim of this research was to evaluate the effect exerted by benzenesulfonamide, and  their derivatives (2,5-dichloro- N-(4-nitro-phenyl)-benzene-sulfonamide, 2-hydrazino-carbonyl-benzenesulfonamide, 4-(2-amino-ethyl)-benze- ne-sulfonamide, and 4-[3-(4-nitro-phenyl)-ureido]-benzene- sulfonamide) on perfusion pressure and coronary reistance.  To evaluate the biological activity of benzenesulfonamide and their derivatives on perfusion pressure and coronary reistance an isolated rat heart model was used. Furthermore, theoretical interaction of 4-(2-amino-ethyl)-benzenesul- fonamide with Calcium channel surface was determined using 6jp5 protein, nifedipine, amlodipine, verapamil and BayK 8644 as theoretical tools in a DockingServer program. The Results showed that 4-(2-amino-ethyl)-ben- zenesulfonamide decreased perfusion pressure and coronary resistance compared to benzenesulfonamide, 2,5-dichloro- N-(4-nitro-phenyl)-benzene-sulfonamide, 2-hydrazinocar- bonyl-benze-nesulfonamide, 4-[3-(4-nitro-phenyl)-ureido]- benenesulfonamide and the control conditions. Besides, theoretical data suggest that 4-(2-aminoethyl)benzenesulfo- namide could interact with aminoacid residues such as Glu614 and Ala320 involved in 6jp5 protein surface. This phenomenon could result in an ligand-Calcium channel  complex  formation to produce a decrease in perfusion pressure and vascular resistance. It is noteworthy that  biological and experimental  models used in this study is an invaluable research tool for investigating questions across the spectrum of physiologic functions of cardiovascular system such as perfusion pressure and coronary resistance

References

Archana, G., Arunkumar, R., & Omkumar, R. (2022). Assays for L-type voltage gated calcium channels. Analytical Biochemistry, 656, 114827. https://doi.org/10.1016/j.ab.2022.114827 DOI: https://doi.org/10.1016/j.ab.2022.114827

Azis, M., Ejaz, S., Tamam, N., Siddique, F., Riaz, N., Qais, F., & Iqbal, J. (2022). Identification of potent inhibitors of NEK7 protein using a comprehensive computational approach. Scientific Reports, 12, 1-17. https://doi.org/10.1038/ s41598-022- 10253-5 DOI: https://doi.org/10.1038/s41598-022-10253-5

Bergson, P., Lipkind, G., Lee, S., Duban, M., & Hanck, D. (2022).Verapamil block of T-type calcium channels. Molecular Pharmacology, 79(3), 411-419. https://doi.org/10.1124/mol.110.069492 DOI: https://doi.org/10.1124/mol.110.069492

Bisht, N., Sah, A., Bisht, S., & Joshi, H. (2021). Emerging need of today: significant utilization of various databases and softwares in drug design and development. Mini Reviews in Medicinal Chemistry, 21(8), 1025-1032. https://doi.org/10.2174/1389557520666201214101329. DOI: https://doi.org/10.2174/1389557520666201214101329

Cauich-Carrillo, R., Figueroa-Valverde, L., Rosas-Nexticapa, M., Garcimarrero-Espino, A., Lopez-Ramos, M., Mateu-Armad, V., Alvarez-Ramirez, M., & Lopez-Gutierrez, T. (2021). Evaluation of effect produced by a steroid-azetidine derivative against infarct area using a heart failure model. Parana Journal of Science and Education, 7(5), 31-39. https://sites.google.com/site/pjsciencea.

Chalkha, M., Akhazzane, M., Moussaid, F., Daoui, O., Nakkabi, A., Bakhouch. A., & El-Yazidi, M. (2022). Design, synthesis, characterization, in vitro screening, molecular docking, 3D-QSAR, and ADME-Tox investigations of novel pyrazole derivatives as antimicrobial agents. New Journal of Chemistry, 46(6), 2747-2760. https://doi.org/10.1039/D1NJ05621B DOI: https://doi.org/10.1039/D1NJ05621B

Figueroa-Valverde, L., Diaz-Cedillo, F., & García-Cervera, E. (2013). Positive inotropic activity induced by a dehydroisoandrosterone derivative in isolated rat heart model. Archives of Pharmacal Research, 36, 1270-1278. DOI: https://doi.org/10.1007/s12272-013-0166-7

Figueroa-Valverde, L., Diaz-Cedillo, F., Diaz-Ku, E., & Camacho-Luis, A (2009) Effect induced by hemisuccinate of pregnenolone on perfusion pressure and vascular resistance in isolated rat heart. African Journal of Pharmacy and Pharmacology, 3, 234-241.

Figueroa-Valverde, L., Diaz-Cedillo, F., Lopez-Ramos, M., & Garcia-Cervera, E. (2011). Changes induced by estradiol-ethylenediamine derivative on perfusion pressure and coronary resistance in isolated rat heart: L-type calcium channel. Biomedical Papers, 155(1), 27-32. https://doi.org/10.5507/bp.2011.018 DOI: https://doi.org/10.5507/bp.2011.018

Figueroa-Valverde, L., Lopez, M., Alvarez, M., Rosas, M., Diaz, F., Mateu, v. (2023). Evaluation of coumarin and their derivatives as Janus Kinase-3 inhibitors using a theoretical model. Brazilian Journal of Science, 2(12), 106-117, https://doi.org/10.14295/bjs.v2i12.423 DOI: https://doi.org/10.14295/bjs.v2i12.423

Figueroa-Valverde, L., Rosas, M., Lopez, M., Diaz, F., Alvarez, M., Mateu, V., & Melgarejo, M. (2023). Effect Produced by a Cyclooctyne Derivative on Both Infarct Area and Left Ventricular Pressure via Calcium Channel Activation. Drug Research, 73(2), 105-112. https://doi.org/DOI: 10.1055/a-1967-2004 DOI: https://doi.org/10.1055/a-1967-2004

Figueroa-Valverde, L., Rosas-Nexticapa, M., Alvarez-Ramirez, M., López-Ramos, M., Díaz-Cedillo, F., & Mateu-Armad, V. (2023). Evaluation of Biological Activity Exerted by Dibenzo [b, e] Thiophene-11 (6H)-One on Left Ventricular Pressure Using an Isolated Rat Heart Model. Drug Research, 73(5), 263-270. https://doi.org/10.1055/a-1995-6351 DOI: https://doi.org/10.1055/a-1995-6351

Figueroa-Valverde, L., Rosas-Nexticapa, M., Melgarejo, M., Díaz-Cedillo, D., López-Ramos, M., & Alvarez-Ramirez, M. (2023). Synthesis and Theoretical Interaction of 3-(2-oxabicyclo [7.4. 0] trideca-1 (13), 9, 11-trien-7-yn-12-yloxy)-steroid Deriva-tive with 17β-hydroxysteroid Dehydrogenase Enzyme Surface”, Biointerface Research in Applied Chemistry, 13(3), 1-11. https://doi.org/10.33263/BRIAC133.266 DOI: https://doi.org/10.33263/BRIAC133.266

Hess, D. A., Sisson, M. E., Suria, H., Wijsman, J., Puvanesasingham, R., Madrenas, J., & Rieder, M. J. (1999). Cytotoxicity of sulfonamide reactive metabolites: apoptosis and selective toxicity of CD8+ cells by the hydroxylamine of sulfamethoxazole. The FASEB Journal, 13(13), 1688-1698. https://doi.org/10.1096/fasebj.13.13.1688 DOI: https://doi.org/10.1096/fasebj.13.13.1688

Gökce, H., Öztürk, N., Sert, Y., El‐Azab, A., AlSaif, N., & Abdel‐Aziz, A. (2018). 4‐[(1, 3‐Dioxoisoindolin‐2‐yl)

methyl] benzenesulfonamide: Full Structural and Spectroscopic Characterization and Molecular Docking with Carbonic Anhydrase II. ChemistrySelect, 3(35), 10113-10124. https://doi.org/10.1002/slct.201802484 DOI: https://doi.org/10.1002/slct.201802484

Grześk, E., Szadujkis Szadurska, K., Bloch Bogusławska, E., Wiciński, M., Malinowski, B., KołTan, S., & GrześK, G. (2017). 2, 4, 6 Trimethyl N [3 (trifluoromethyl) phenyl] benzenesulfonamide increases calcium influx in lipopolisaccharide-pre-treated arteries. Experimental and Therapeutic Medicine, 13(2), 766-770. DOI: https://doi.org/10.3892/etm.2016.3986

Hangeland, J., Cheney, D., Friends, T., Swartz, S., Levesque, P., Rich, A., & Ewing. W. (2008). Design and SAR of selective T-type calcium channel antagonists containing a biaryl sulfonamide core. Bioorganic & Medicinal Chemistry Letters, 18(2), 474-478. https://doi.org/10.1016/j.bmcl.2007.11.103 DOI: https://doi.org/10.1016/j.bmcl.2007.11.103

Harris, P., Boloor, A., Cheung, M., Kumar, R., Crosby, R., & Davis-Ward, R. Stafford, (2008). Discovery of 5-[[4-[(2, 3-dimethyl-2 H-indazol-6-yl) methylamino]-2-pyrimidinyl] amino]-2-methyl- benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. Journal of Medicinal Chemistry, 51(15), 4632-4640. https://doi.org/10.1021/jm800566m DOI: https://doi.org/10.1021/jm800566m

Kanda, Y., Kawanishi, Y., Oda, K., Sakata, T., Mihara, S., Asakura, K., & Konoike, T. (2001). Synthesis and structure-activity relationships of potent and orally active sulfonamide ETB selective antagonists. Bioorganic & Medicinal Chemistry, 9(4), 897-907. https://doi.org/10.1016/S0968-089600) 00305-9 DOI: https://doi.org/10.1016/S0968-0896(00)00305-9

Kim, J., Keum, G., Chung, H., & Nam, G. (2016). Synthesis and T-type calcium channel-blocking effects of aryl (1, 5-disubstituted-pyrazol-3-yl) methyl sulfonamides for neuropathic pain treatment. European Journal of Medicinal Chemistry, 123, 665-672. DOI: https://doi.org/10.1016/j.ejmech.2016.07.032

Krishnamurthy, V., Bohall, B., Kim, C., Moustakas, D., Christianson, D., & Whitesides, V. (2007). Thermodynamic parameters for the association of fluorinated benzenesulfonamides with bovine carbonic anhydrase II. Chemistry-An Asian Journal, 2(1), 94-105. https://doi.org/10.1002/asia.200600360 DOI: https://doi.org/10.1002/asia.200600360

Kumar, S., Rajput, M., Tickoo, S. (2021). Laws, Regulations, Policies and Guidelines Governing the Care and Use of Laboratory Animals. Springer, Singapore, 23-38, 2021. DOI: https://doi.org/10.1007/978-981-16-0987-9_2

Leblond, C., & Hoff H. (1994). Effect of sulfonamides and thiourea derivatives on heart rate and organ morphology. Endocrinology, 35(4), 229-233. https://doi.org/10.1210/endo-35-4-229 DOI: https://doi.org/10.1210/endo-35-4-229

Lehr, D. (1957). Clinical toxicity of sulfonamides. Annals of the New York Academy of Sciences, 69(3), 417-447. DOI: https://doi.org/10.1111/j.1749-6632.1957.tb49682.x

Mahanthesh, M., Ranjith, D., Yaligar, R., Jyothi, R., Narappa, G., &. Ravi, M. (2020). Swiss ADME prediction of phytochemicals present in Butea monosperma (Lam.) Taub. Journal of Pharmacognosy and Phytocheemistry, 9(3), pp. 1799-1809.

Malysz, J., Grønlien, J., Anderson, J., Håkerud, M., Thorin-Hagene K., Ween, K.,, & Gopalakrishnan M. (2009). In vitro pharmacological characterization of a novel allosteric modulator of α7 neuronal acetylcholine receptor, 4-(5-(4-chlo- rophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl) benzenesulfona- mide (A-867744), exhibiting unique pharmacological profile. Journal of Pharmacology and Experimental Therapeutics, 330(1), 257-267, https://doi.org/10.1124/jpet.109.151886 DOI: https://doi.org/10.1124/jpet.109.151886

Manson, R., Marche, P., & Hintze, T. (2003). Novel vascular biology of third-generation L-type calcium channel antagonists: ancillary actions of amlodipine. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(12), 2155-2163. https://doi.org/10.1161/01.ATV.0000097770.66965.2A DOI: https://doi.org/10.1161/01.ATV.0000097770.66965.2A

Nelson, K., Christopher, F., &Milton, N. (2022). Teach yourself SPSS and STATA. International Journal of Academic Pedagogical Research, 7(6), 84-122.

Nguyen, P., Elkamhawy, A., Choi, Y., Lee, C., Lee, K., & Cho, J. (2022). Suppression of Tumor Growth and Cell Migration by Indole-Based Benzenesulfonamides and Their Synergistic Effects in Combination with Doxorubicin. International Journal of Molecular Sciences, 23(17), 1-23. https://doi.org/10.3390/ijms23179903 DOI: https://doi.org/10.3390/ijms23179903

Nie, Y., Yang, J., Zhou, L., Yang, Z., Liang, J., Liu, Y., & Zhang, Y. (2022). Marine fungal metabolite butyrolactone I prevents cognitive deficits by relieving inflammation and intestinal microbiota imbalance on aluminum trichloride-injured zebrafish. Journal of Neuroinflammation, 19(1), 1-17. https://doi.org/10.1186/s12974-022-02403-3 DOI: https://doi.org/10.1186/s12974-022-02403-3

Olda, A., Trixie, J., Bolang, G., Witular, Y., & Langi, S. (2022). Nifedipine, Calcium Channel Blocker (Antihypertensive), as a Tocolytic to inhibit Premature Birth in Reducing the Risk of Neonatal Death in Childbirth: Meta-Analysis and Systematic Review of Large Clinical Trial. Indonesian Journal of Obstetrics and Gynecology, 1, 58-62. https://doi.org/10.32771/inajog.v10i1.1549 DOI: https://doi.org/10.32771/inajog.v10i1.1549

Pervaiz, M., Riaz, A., Munir, A., Saeed, Z., Hussain, S., Rashid, A., Umar, Y., & Adnan, A. (2010) Synthesis and characterization of sulfonamide metal complexes as antimicrobial agents. Journal of Molecular Structure, 1202, 1-35. https://doi.org/10.1016/j.molstruc.2019. 127284 DOI: https://doi.org/10.1016/j.molstruc.2019.127284

Phopin, K., Ruankham, W., Prachayasittikul, S., Prachayasittikul, V., & Tantimongcolwat, T. (2020). Insight into the molecular interaction of cloxyquin (5-chloro-8-hydroxyquinoline) with bovine serum albumin: biophysical analysis and computational simulation. International Journal of Molecular Sciences, 21, 1-18. https://doi.org/10.3390/ijms21010249 DOI: https://doi.org/10.3390/ijms21010249

Ren, Y., Ma, Y., Cherukupalli, S., Tavi, J., Menéndez-Arias, L., Liu, X., Zhan, p. (2020). Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. European Journal of Medicinal Chemistry, 206, 1-13. https://doi.org/10.1016/j.ejmech.2020.112714 DOI: https://doi.org/10.1016/j.ejmech.2020.112714

Roy, A., Sarkar, T., Datta, S., Maiti, A., Chakrabarti, M., Mondal, T., & Roy, K. (2022). Structure‐based discovery of (S)‐2‐amino‐6‐(4‐fluorobenzyl)‐5,6,11,11a‐tetrahydro‐1H‐imida- zo[1′,5′:1,6]pyrido[3,4‐b]indole‐1, 3 (2H)‐dione as low nanomolar, orally bioavailable autotaxin inhibitor. Chemical Biology & Drug Design, 99(3), 496-503. https://doi.org/10.1111/cbdd.14017 DOI: https://doi.org/10.1111/cbdd.14017

Schwartz, W., Relman, A., & Leaf, A. (1995). Oral administration of a potent carbonic anhydrase inhibitor (" Diamox"). III. Its use as a diuretic in patients with severe congestive heart failure due to cor pulmonale. Annals of Internal Medicine, 42(1), 79-89. https://doi.org/10.7326/0003-4819-42-1-79 DOI: https://doi.org/10.7326/0003-4819-42-1-79

Shao, P., Ye, F., Chakravarty, P., Varughese, D., Herrington, J., Dai, G., & Duffy, J. (2012). Aminopiperidine sulfonamide Cav2. 2 channel inhibitors for the treatment of chronic pain. Journal of Medicinal Chemistry, 55(22), 9847-9855. https://doi.org/10.1021/jm301056k DOI: https://doi.org/10.1021/jm301056k

Takenaka, T., Shiono, K., Honda, K., Asano, M., Miyazaki, I., & Maeno, H. (1982). Antihypertensive and adrenoceptor blocking properties of new sulfonamide-substituted phenylethylamines. Clinical and Experimental Hypertension, 4(1-2), 125-137. https://doi.org/10.3109/10641968209061580 DOI: https://doi.org/10.3109/10641968209061580

Talley, J., Brown, D., Carter, J., Graneto, M., Koboldt, C., Masferrer, J., & Seibert, K. (2000). 4-[5-Methyl-3-phenylisoxazol-4-yl]-benzene-sulfonamide, valdecoxib: a potent and selective inhibitor of COX-2. Journal of Medicinal Chemistry, 43(5), 775-777. https://doi.org/10.1021/jm990577v DOI: https://doi.org/10.1021/jm990577v

Tellew, J., Baska, R., Beyer, S., Carlson, K., Cornelius, L., Fadnis, L., & Macor, J. (2003). Discovery of 4′-[(Imidazol-1-yl) methyl] biphenyl-2-sulfonamides as dual endothelin/Angiotensin II receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 13(6), 1093-1096. https://doi.org/10.1016/S0960-894X(03)00018-0 DOI: https://doi.org/10.1016/S0960-894X(03)00018-0

Tilton. R., Munsch, C., Sherwood, S., Chen, S., Chen, Y., Wu, C., & Brock, T. (2000). Attenuation of pulmonary vascular hypertension and cardiac hypertrophy with sitaxsentan sodium, an orally active ETAreceptor antagonist. Pulmonary Pharmacology & Therapeutics, 13(2), 87-97. https://doi.org/10.1006/pupt.2000. 0237 DOI: https://doi.org/10.1006/pupt.2000.0237

Turner, C., Pawluk, M., Bolsoni, J., Zeglinski, M., Shen, Y., Zhao, H., & Granville, D. J. (2022). Sulfaphenazole reduces thermal and pressure injury severity through rapid restoration of tissue perfusion. Scientific Reports, 12(1), 12622. https://doi.org/10.1038/s41598-022-16512-9 DOI: https://doi.org/10.1038/s41598-022-16512-9

Vilter, C., & Blankenhorn, M. (1944). The toxic reactions of the newer sulfonamides. Journal of the American Medical Association, 126(11), 691-695. doi:10.1001/jama.1944.02850460021005 DOI: https://doi.org/10.1001/jama.1944.02850460021005

Wu, C., Chan, M., Stavros, F., Raju, B., Okun, I., Mong, S., & Dixon, R. (1997). Discovery of TBC11251, a potent, long acting, orally active endothelin receptor-A selective antagonist. Journal of Medicinal Chemistry, 40(11), 1690-1697. https://doi.org/10.1021/jm9700068 DOI: https://doi.org/10.1021/jm9700068

Zhang, Q., Xia, Z. Joshi, S., Scott, V., &. Jarvis, M. (2015). Optimization of ADME properties for sulfonamides leading to the discovery of a T-type calcium channel blocker, ABT-639. Medicinal Chemistry Letters, 6(6), 641-644. https://doi.org/10.1021/acsmedchemlett.5b00023 DOI: https://doi.org/10.1021/acsmedchemlett.5b00023

Zubrienė, A., Smirnov, A., Dudutienė, V., Timm, D., Matulienė, J., Michailovienė, V., & Matulis, D. (2017). Intrinsic Thermodynamics and Structures of 2, 4‐and 3, 4‐Substituted Fluorinated Benzenesulfonamides Binding to Carbonic Anhydrases. ChemMedChem. 12(2), 161-176. https://doi.org/10.1002/cmdc.201600509 DOI: https://doi.org/10.1002/cmdc.201600509

Downloads

Published

2024-03-25

How to Cite

Alvarez-Ramirez, M., Figueroa-Valverde, L., Rosas-Nexticapa, M., López-Ramos, M., Mateu-Armad, M. V., Garcimarrero-Espino, E. A., Hau-Heredia, L., Cauich-Carrillo, R., & Mijangos-Sanchez, J. (2024). Biological activity of a benzene sulfonamide on perfusion pressure and coronary resistance using an isolated rat heart model. Brazilian Journal of Science, 3(4), 11–23. https://doi.org/10.14295/bjs.v3i4.540