Phyto-assisted synthesis of Silver nanoparticles using Tinospora cordifolia leaf extract and their antibacterial activity: An ecofriendly approach




Silver nanoparticles (SNP), Tinospora cordifolia, characterization, antimicrobial activity


To meet the increasing demands for commercial nanoparticles new eco-friendly methods of synthesis are being discovered. Plant mediated synthesis of nanoparticles offers single step, easy extracellular synthesis of nanoparticles. We report the synthesis of antibacterial Silver nanoparticles using leaf extract of the medicinal plant, Tinospora cordifolia. The leaf extract was prepared by boiling chopped leaves of Tinospora cordifolia in deionized water for 10 min and filtering the mixture with Whatman filter paper No.1. The filtrate was used as a reducing agent and stabilising agent for AgNO3. On adding 1 mM solution of Silver nitrate to the leaf extract and stirring at 75 °C for 25 min, a change in colour from yellow-brown to brown-black specified the production of Silver nanoparticles. The formation of Silver nanoparticles was monitored by UV-visible spectroscopy and further characterization of the synthesized Silver nanoparticles was done by XRD studies. The antibacterial studies were performed on Gram negative and Gram positive pathogens, Salmonella typhi, Pseudomonas aeruginosa, Enterobacter aerogenes and Staphylococcus aureus, by agar well diffusion method, on Mueller Hinton agar medium. The Silver nanoparticles synthesized from Tinospora cordifolia leaf extract were found to have antimicrobial activity against these Gram negative and Gram positive pathogenic bacteria.


Agarwal, S., & Priyadarshini, H. (2019). Assesment of anti- microbial activity of different concentrations of Tinospora cordifolia against Streptococcus mutans: an in-vitro study. Dental Research Journal, 16(1), 24-28. DOI:

Anuj, S. (2013). Green synthesis of silver nanoparticles by using Tinospora cordifolia stem powder, characterization and its antibacterial activity against antibiotics resistant bacteria. International Journal of Pharmacy Research and Technology, 3(2), 11-16. DOI:

Ashraf, A., Zafar, S., Zahid, K., Shah, M. S., Al-Ghanim, K. A., Al-Misned, F., & Mahboob, S. (2019). Synthesis, characterization, and antibacterial potential of silver nanoparticles synthesized from Coriandrum sativum L, Journal of Infection and Public Health, 12(2), 275-281. DOI:

Babu, M. M. G., & Gunasekaran, P. (2009). Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids and Surfaces B: Biointerfaces, 74(1), 191-195. DOI:

Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria-a battle of the titans. Frontiers in Microbiology, 19, 1441. DOI:

Barros, C. H. N., Fulaz, S., Stanisic, D., & Tasic, L. (2018). Biogenic nanosilver against multidrug-resistant bacteria (MDRB). Antibiotics, 7(3), 69. DOI:

Begum, H. J., Ramamurthy, V., & Senthil Kumar, S. (2019). Study of synthesis and characterization of silver nanoparticles from Tinospora cordifolia. The Pharma Innovation Journal, 8(1), 612-615.

Daisy, P., & Saipriya, K. (2012). Biochemical analysis of Cassia fistula aqueous extract and phyto-chemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International Journal of Nanomedicine, 7, 1189-1202. DOI:

Das, V. L., Thomas, R., Rintu, T., Varghese, E., Soniya, V., Mathew, J., & Radhakrishnan, E. K. (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3Biotech, 4, 121-126. DOI:

Dixit, M., & Shukla, P. (2020). Microbial nanotechnology for bioremediation of industrial wastewater. Frontiers in Microbiology, 11, 2411. DOI:

Duraipandiyan, V., Ignacimuthu, S., Balakrishna, K., & Al-Harbi, N. A. (2012). Anti-microbial activity of Tinospora cordifolia: An ethnomedicinal plant. Asian Journal of Traditional Medicine, 7(2), 59-65.

Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 1(6), 453. DOI:

Jain, K., Patel, A., Pardhi, V., & Flora, S. (2021). Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules, 26(6), 1797. DOI:

Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J. C., & Panwar, J. (2011). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 3(2), 635-641. DOI:

Jayaseelan, C., Rahuman, A. A., Rajakumar, G., Kirthi, A. V., Santhoshkumar, T., & Marimuthu, S. (2011). Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heart leaf moon seed plant Tinospora cordifolia Miers. Parasitology Research, 109, 185-194. DOI:

Jha, A. K,. & Prasad, K. (2010). Green synthesis of silver nanoparticles using cycas leaf. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), 110-117. DOI:

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. DOI:

Mekky, A. E., Farrag, A., Ahmed, A. A., & Sofy, A. R. (2021). Preparation of zinc oxide nanoparticles using Aspergillus niger as antimicrobial and anticancer agents. Journal of Pure and Applied Microbiology, 15(3), 1547-1566. DOI:

Mukherjee, P. K., Banerjee, S., Das Gupta, B., & Kar, A. (2022). Chapter 1 - Evidence-based validation of herbal medicine: Translational approach. In: Evidence-based validation of herbal medicine (Second Edition), Elsevier: 1-41. DOI:

Narayanaswamy, K., Athimoolam, R., & Ayyavoo, J. (2015). Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. Journal of Nanoscience, 2015, 8. DOI:

Phanjom, P., Sultana, A., Sarma, H., Ramchiary, J., Goswami, K. & Baishya, P. (2012). Plant-mediated synthesis of silver nanoparticles using Elaeagnus latifolia leaf extract. Digest Journal of Nanomaterials and Biostructure, 7(3), 1117-1123.

Phanse, N., Venkataraman, K., Mishra, V., Shah, S. & Parikh, S. (2022). Biomediated synthesis of silver nanoparticles from Coriandrum sativum leaf extract: A green approach. International Journal for Modern Trends in Science and Technology, 8(05), 477-480. 10.46501/IJMTST0805072

Pradhan, S. (2013). Comparative analysis of silver nanoparticles prepared from different plant extracts (Hibiscus rosa sinensis, Moringa oleifera, Acorus calamus, Cucurbita maxima, Azadirachta indica) through green synthesis method, Ph.D. Thesis. National Institute of Technology, Rourkela.

Prajwala, B., Gopenath, T. S., Prasad, N., Raviraja, S., & Basalingappa, K. M. (2021). Green synthesis of silver nanoparticle by using Tinospora cordifolia leaf extract and its antimicrobial property. International Journal of Pharmaceutical Science & Research, 12(3), 1881-1886. DOI:

Prasad, S., & Srivastava, S. K. (2021). Oxidative stress and cancer: Antioxidative role of Ayurvedic plants. In Cancer, (Second Edition), 301-310. DOI:

Rajathi, K., Vijaya Raj, D., Anarkal, J., & Sridhar, S. (2012). Green Synthesis, characterization and in-vitro antibacterial activity of silver nanoparticles by using Tinospora cordifolia leaf extract. International Journal of Green Chemistry and Bioprocess, 2(2), 15-19.

Rajeshkumar, S., Santhiyaa, R. V., & Veena, P. (2018). Plant and its biomolecules on synthesis of silver nanoparticles for the antibacterial and antifungal activity in nanotechnology. In: The life sciences, edited by Prasad, R., Jha, A., DOI:

Prasad, K. (eds) Exploring the realmns of nature for nanosynthesis nanotechnology in the life sciences. Springer, Cham. DOI:

Rasheed, T., Bilal, M., Iqbal, H. M. N., & Li, C. (2017). Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf B: Biointerfaces, 158, 408-415. DOI:

Selvam, K., Sudhakar, C., Govarthanan, M., Thiyagarajan, P., Sengottaiyan, A., Senthilkumar, B., & Selvankumar, T. (2017). Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant. Journal of Radiation Research and Applied Sciences, 10, 6-12. DOI:

Singh, K., Panghal, M., Kadyan, S., Chaudhary, U., & Yadav, J. P. (2014). Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. Journal of Nanomedicine and Nanotechnology, 5(2), 1-6. DOI:

Zhang, Y., Cui, L., Lu, Y., He, J., Hussain, H., Xie, L., Sun, X., Meng, Z., Cao, G., Qin, D., & Wang, D. (2022). Characterization of silver nanoparticles synthesized by leaves of Lonicera japonica Thunb. International Journal of Nanomedicine, 17, 1647-1657. DOI:




How to Cite

Phanse, N. V., Venkataraman, K., Kekre, P. A., Shah, S., & Parikh, S. (2024). Phyto-assisted synthesis of Silver nanoparticles using Tinospora cordifolia leaf extract and their antibacterial activity: An ecofriendly approach. Brazilian Journal of Science, 3(2), 57–65.