Identification of research gaps and systematization of trends on surface treatment in dental implants based on indexed data in the Scopus database

Authors

  • Talita Rodrigues de Almeida Taubaté University, Taubaté, São Paulo State, Brazil
  • Rubens Guimarães Filho Taubaté University, Taubaté, São Paulo State, Brazil

DOI:

https://doi.org/10.14295/bjs.v2i12.437

Keywords:

dental implant surface treatment, osseointegration of dental implants, implant surfaces

Abstract

The installation of dental implants brings significant improvements in patient's quality of life, causing the demand for these procedures to increase. This growth results from the increasing use of innovative technologies in oral care. Since the 1970s, dental implants have continuously evolved, both in terms of shape and surface treatments. This evolution aims to improve osseointegration, an essential process for implant success, and prevent complications such as peri-implantitis. A necessary part of this evolutionary process is surface treatment on dental implants. This treatment improves implant surfaces' physical and chemical properties, promoting a more efficient interaction between the implant and surrounding tissues. To achieve this goal, modifications are made to the texture, composition, and characteristics of the implant surface. In this context, this study aims to identify the research gaps related to surface treatment on dental implants. To this end, a literature review was performed in the Scopus database using specific search terms related to this topic. The 20 most cited articles from 2017 to 2023, which address the main research trends in this area, were selected for analysis. The theoretical contribution of this study is to systematize the current research trends on the surface treatment of dental implants. This provides a better understanding of existing treatments and their limitations and presents ongoing studies that aim to overcome them. Furthermore, the research highlights studies under development, both in vitro and in vivo, that seek to apply scientific advances in clinical practice to improve implant outcomes. This applied contribution is relevant, as it can positively impact clinical practice and benefit patients.

References

Abdulhameed, E. A., Al-Rawi, N. H., Omar, M., Khalifa, N., Samsudin, A. B. R. (2021). Titanium dioxide dental implants surfaces related oxidative stress in bone remodeling: a systematic review. PeerJ, 10, e12951. http://doi.org/10.7717/peerj.12951

Adell, R. (1985). Tissue integrated prostheses in clinical dentistry. Int. Dent. J., 35, 259–265. PMID: 3912327.

Alasqah, M. N. (2019). Antimicrobial efficacy of photodynamic therapy on dental implant surfaces: T A systematic review of in vitro studies. Photodiagnosis and Photodynamic Therapy, 25 (2019) 349–353. https://doi.org/10.1016/j.pdpdt.2019.01.018

Albrektsson, T., Wennerberg, A. (2019). On osseointegration in relation to implant surfaces, Wiley. Clin Implant Dent Relat Res., 21, 4–7. https://doi.org/10.1111/cid.12742

Alghamdi, H. S. (2018). Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV) Bone: An Overview. J. Funct. Biomater., 9, 7. https://doi.org/10.3390/jfb9010007

Arizton Advisory & Intelligence (2020) - Dental Implants Market - Global Outlook and Forecast 2020-2025. Available in: https://www.arizton.com/market-reports/dental-implants-market. Access on: January 25, 2023.

Berglundh, T., Gotfredsen, K., Zitzmann, N. U., Lang, N. P., Lindhe, J. (2007) Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: An experimental study in dogs. Clin. Oral Implant. Res., 18, 655–661. https://doi.org/10.1111/j.1600-0501.2007.01397.x

Brånemark P. I., Hansson B. O., Adell R, Breine, U., Lindstrom, J., Hallen, O., Ohman, A. (1997). Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl., 16, 1–132.

Carossa, M., Cavagnetto, D., Mancini, F., Balma, A. M., Mussano, F. (2022). Plasma of Argon Treatment of the Implant Surface, Systematic Review of In Vitro Studies. Biomolecules, 12, 1219. https://doi.org/10.3390/biom12091219

Cervino, G., Fiorillo, L., Iannello, G., Santonocito, D., Risitano, G., Cicciù, M. (2019). Sandblasted and Acid Etched Titanium Dental Implant Surfaces Systematic Review and Confocal Microscopy Evaluation. Materials, 12, 1763. https://doi.org/10.3390/ma12111763

Costa, R. C., Nagay, B. E., Bertolini, M., Costa-Oliveira, B. E., Sampaio, A. A., Retamal-Valdes, B. A., Shibli, J. A., Feres, M. A. R., Barao V. A. R., Souza, J. G. S. (2021). Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Advances in Colloid and Interface Science. 298 (2021), 102551. https://doi.org/10.1016/j.cis.2021.102551

Dhaliwal, J. S., Rahman, N. A. A., Ming, L. C., Dhaliwal, S. K. S., Knights, J., Junior., R. F. A. (2021). Microbial Biofilm Decontamination on Dental Implant Surfaces: A mini review. Frontiers in Cellular and Infection Microbiology, 2021. https://doi.org/10.3389/fcimb.2021.736186

Elani H. W., Starr J. R., Da Silva J. D., Gallucci G. O. (2018). Trends in Dental Implant Use in the U.S., 1999–2016, and Projections to 2026. Journal of Dental Research, 97(13), 1424-1430. https://doi.org/10.1177/0022034518792567

Espuny, M., Reis, J. D. M., Diogo, G. M. M., Campos, T. L. R., Santos, V. H. M., Costa, A. C. F., Gonçalves, G. S., Tasinaffo, P. M., Dias, L. A. V., Cunha, A. M., Sampaio, N. A. S., Rodrigues, A. M., Oliveira, O. J., (2021). COVID-19: The Importance of Artificial Intelligence and Digital Health During a Pandemic. In: Latifi, S. (eds) ITNG 2021 18th International Conference on Information Technology-New Generations. Advances in Intelligent Systems and Computing, 1346. Springer, Cham. https://doi.org/10.1007/978-3-030-70416-2_4

Gaviria, L., Salcido, J. P., Guda, T., Joo, L. (2014). Current trends in dental implants. Ong Assoc Oral Maxillofac Surg., 40, 50-60. http://dx.doi.org/10.5125/jkaoms.2014.40.2.50

Hanawa, T. (2010). Biofunctionalization of titanium for dental implant. Japanese Dental Science Review, 46, 93-101. https://doi.org/10.1016/j.jdsr.2009.11.001

Hickok, N. J., Shapiro, I. M., Chen, A. F. (2018). The Impact of Incorporating Antimicrobials into Implant Surfaces. J. Dent. Res., 97, 14–22. https://doi.org/10.1177/0022034517731768

Huang, X., Bai, J., Liu, X., Meng, Z., Shang, Y., Jiao, T., Chen, G., Deng, J. (2021). Scientometric Analysis of Dental Implant Research over the Past 10 Years and Future Research Trends. BioMed Research International/2021/ Article ID 6634055. https://doi.org/10.1155/2021/6634055

Iftikhar, S., Jahanzeb, N., Saleem, M., Rehman, S., Jukka Pekka Matinlinna, J.P., Khan, A.S. (2021) The trends of dental biomaterials research and future directions: A mapping review. Saudi Dental Journal, 33, 229–238. https://doi.org/10.1016/j.sdentj.2021.01.002

Jeevanandam, J., Danquah, M. K., Pan, S. (2021). Plant-Derived Nanobiomaterials as a Potential Next Generation Dental Implant Surface Modifier, Frontiers in Materials, 2021. https://doi.org/10.3389/fmats.2021.666202

Kellesarian, S. V., Malignaggi, V. R., Kellesarian, T. V., Ahmed, H. B., Javed, F. (2017). Does incorporating collagen and chondroitin sulfate matrix in implant surfaces enhance osseointegration? A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg., 2017. https://doi.org/10.1016/j.ijom.2017.10.010

Kittur, N., Oak, R., Dekate, D., Jadhav, S., Dhatrak, P. (2021). Dental implant stability and its measurements to improve osseointegration at the bone-implant interface: A review. Materials today: proceedings, 43(2), 1064-1070. https://doi.org/10.1016/j.matpr.2020.08.243

Kligman, S., Ren, Z., Chung, C., Perillo, M.A., Chang, Y., Koo, H., Zheng, Z., Li, C. (2021). The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med., 10, 1641. https://doi.org/10.3390/jcm10081641

Kothari, C. R., Garg, G. (2019), Research Methodology Methods and Techniques, 4th edn. New Age International, Nova Deli, 2019

Kunrath. M. F., Campos, M. M. (2021). Metallic-nanoparticle release systems for biomedical implant surfaces: effectiveness and safety. Nanotoxicology, 15(6), 721–739. https://doi.org/10.1080/17435390.2021.1915401

Kunrath, M. F, Diz, F. M., Magini, R., Galárraga-Vinueza, M. E. (2020). Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. Advances in Colloid and Interface Science, 284, 102265. https://doi.org/10.1016/j.cis.2020.102265

Nair L. S., Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

Nest, V. D., Smidt, L., Lubbe, D. P. (2015). The application of statistical and/or non-statistical sampling techniques by internal audit functions in the South African banking industry. Risk Gov. Control Financ. Mark. Inst., 5, 71–80.

Pachauri, P., Bathala L. R., Sangur, R. (2014). Techniques for dental implant nanosurface modifications. The journal of advanced prosthodontics, 6, 498-504. https://doi.org/10.4047/jap.2014.6.6.498

Patel, V., Sadiq, M. S., Najeeb, S., Khurshid, Z., Muhammad S., Zafar M. S., Heboyan, A. (2023). Effects of metformin on the bioactivity and osseointegration of dental implants: A systematic review. Journal of Taibah University Medical Sciences, 18(1), 196e206. https://doi.org/10.1016/j.jtumed.2022.07.003

Rasouli, R., Barhoum, A., Uludag, H. (2018). A Review of Nanostructured Surface and Materials for Dental Implants: Surface Coating, Pattering and Functionalization for Improved. Biomater. Sci., 2018. https://doi.org/10.1039/C8BM00021B

Reis, J. S. M., Silva, F. O., Espuny, M., Alexandre, L. G. L., Barbosa, L .C. F. M, Bonassa, A. C. M, Faria, A. M., Sampaio, N. A. S., Santos, G., Oliveira, O. J. (2020). The rapid escalation of publication on COVID-19: A snapshot of trends in the early month to overcome the pandemic and to I improve life quality. International Journal for Quality Research, 14(3), 951–968. https://doi.org/10.24874/IJQR14.03-19

Renvert, S., Quirynen, M. (2015). Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res., 26(11), 15-44. https://doi.org/10.1111/clr.12636.

Saghiri, M. A., Freag, P., Fakhrzadeh, A., Saghiri, A. M. (2021). Current technology for identifying dental implants: a narrative review. Jessica Eid Bulletin of the National Research Centre, 45, 7. https://doi.org/10.1186/s42269-020-00471-0

Sargolzaie, N., Moeintaghavi, A., Shojaie, H. (2017). Comparing the Quality of Life of Patients Requesting Dental Implants Before and After Implant. Open Dent J., 11, 485–491. https://doi.org/10.2174/1874210601711010485

Smeo, K., Nasher, R., Gutknecht, N. (2018). Antibacterial effect of Er,Cr:YSGG laser in the treatment of peri-implantitis and their effect on implant surfaces: a literature review. Lasers in Dental Science, 2, 63–71. https://doi.org/10.1007/s41547-018-0032-5

Souza, J.C.M., Sordi, M.B., Kanazawa, M., Ravindran, S. Henriques, B., Silva, F.S., Aparicio, C., Cooper, L.F. (2019). Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 94, 112–131. https://doi.org/10.1016/j.actbio.2019.05.045

Stavropoulos, A., Bertl, K., Winning, L., Polyzois, I. (2021). What is the influence of implant surface characteristics and/ or implant material on the incidence and progression of peri- implantitis? A systematic literature review. Clin Oral Impl Res., 32(21), 203–229. https://doi.org/10.1111/clr.13859

Wu, B., Tang, Y., Wang, K., Zhou, X., Xiang, L. (2022). Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO2 NTAs. International Journal of Nanomedicine, 17. https://doi.org/10.2147/IJN.S362720

Yeo, L. I. (2020). Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. Materials, 13, 89. https://doi.org/10.3390/ma13010089

Downloads

Published

2023-12-01

How to Cite

Almeida, T. R. de, & Guimarães Filho, R. (2023). Identification of research gaps and systematization of trends on surface treatment in dental implants based on indexed data in the Scopus database. Brazilian Journal of Science, 2(12), 66–76. https://doi.org/10.14295/bjs.v2i12.437