Identification of research gaps and systematization of trends on surface treatment in dental implants based on indexed data in the Scopus database
DOI:
https://doi.org/10.14295/bjs.v2i12.437Keywords:
dental implant surface treatment, osseointegration of dental implants, implant surfacesAbstract
The installation of dental implants brings significant improvements in patient's quality of life, causing the demand for these procedures to increase. This growth results from the increasing use of innovative technologies in oral care. Since the 1970s, dental implants have continuously evolved, both in terms of shape and surface treatments. This evolution aims to improve osseointegration, an essential process for implant success, and prevent complications such as peri-implantitis. A necessary part of this evolutionary process is surface treatment on dental implants. This treatment improves implant surfaces' physical and chemical properties, promoting a more efficient interaction between the implant and surrounding tissues. To achieve this goal, modifications are made to the texture, composition, and characteristics of the implant surface. In this context, this study aims to identify the research gaps related to surface treatment on dental implants. To this end, a literature review was performed in the Scopus database using specific search terms related to this topic. The 20 most cited articles from 2017 to 2023, which address the main research trends in this area, were selected for analysis. The theoretical contribution of this study is to systematize the current research trends on the surface treatment of dental implants. This provides a better understanding of existing treatments and their limitations and presents ongoing studies that aim to overcome them. Furthermore, the research highlights studies under development, both in vitro and in vivo, that seek to apply scientific advances in clinical practice to improve implant outcomes. This applied contribution is relevant, as it can positively impact clinical practice and benefit patients.
References
Abdulhameed, E. A., Al-Rawi, N. H., Omar, M., Khalifa, N., Samsudin, A. B. R. (2021). Titanium dioxide dental implants surfaces related oxidative stress in bone remodeling: a systematic review. PeerJ, 10, e12951. http://doi.org/10.7717/peerj.12951
Adell, R. (1985). Tissue integrated prostheses in clinical dentistry. Int. Dent. J., 35, 259–265. PMID: 3912327.
Alasqah, M. N. (2019). Antimicrobial efficacy of photodynamic therapy on dental implant surfaces: T A systematic review of in vitro studies. Photodiagnosis and Photodynamic Therapy, 25 (2019) 349–353. https://doi.org/10.1016/j.pdpdt.2019.01.018
Albrektsson, T., Wennerberg, A. (2019). On osseointegration in relation to implant surfaces, Wiley. Clin Implant Dent Relat Res., 21, 4–7. https://doi.org/10.1111/cid.12742
Alghamdi, H. S. (2018). Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV) Bone: An Overview. J. Funct. Biomater., 9, 7. https://doi.org/10.3390/jfb9010007
Arizton Advisory & Intelligence (2020) - Dental Implants Market - Global Outlook and Forecast 2020-2025. Available in: https://www.arizton.com/market-reports/dental-implants-market. Access on: January 25, 2023.
Berglundh, T., Gotfredsen, K., Zitzmann, N. U., Lang, N. P., Lindhe, J. (2007) Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: An experimental study in dogs. Clin. Oral Implant. Res., 18, 655–661. https://doi.org/10.1111/j.1600-0501.2007.01397.x
Brånemark P. I., Hansson B. O., Adell R, Breine, U., Lindstrom, J., Hallen, O., Ohman, A. (1997). Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl., 16, 1–132.
Carossa, M., Cavagnetto, D., Mancini, F., Balma, A. M., Mussano, F. (2022). Plasma of Argon Treatment of the Implant Surface, Systematic Review of In Vitro Studies. Biomolecules, 12, 1219. https://doi.org/10.3390/biom12091219
Cervino, G., Fiorillo, L., Iannello, G., Santonocito, D., Risitano, G., Cicciù, M. (2019). Sandblasted and Acid Etched Titanium Dental Implant Surfaces Systematic Review and Confocal Microscopy Evaluation. Materials, 12, 1763. https://doi.org/10.3390/ma12111763
Costa, R. C., Nagay, B. E., Bertolini, M., Costa-Oliveira, B. E., Sampaio, A. A., Retamal-Valdes, B. A., Shibli, J. A., Feres, M. A. R., Barao V. A. R., Souza, J. G. S. (2021). Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Advances in Colloid and Interface Science. 298 (2021), 102551. https://doi.org/10.1016/j.cis.2021.102551
Dhaliwal, J. S., Rahman, N. A. A., Ming, L. C., Dhaliwal, S. K. S., Knights, J., Junior., R. F. A. (2021). Microbial Biofilm Decontamination on Dental Implant Surfaces: A mini review. Frontiers in Cellular and Infection Microbiology, 2021. https://doi.org/10.3389/fcimb.2021.736186
Elani H. W., Starr J. R., Da Silva J. D., Gallucci G. O. (2018). Trends in Dental Implant Use in the U.S., 1999–2016, and Projections to 2026. Journal of Dental Research, 97(13), 1424-1430. https://doi.org/10.1177/0022034518792567
Espuny, M., Reis, J. D. M., Diogo, G. M. M., Campos, T. L. R., Santos, V. H. M., Costa, A. C. F., Gonçalves, G. S., Tasinaffo, P. M., Dias, L. A. V., Cunha, A. M., Sampaio, N. A. S., Rodrigues, A. M., Oliveira, O. J., (2021). COVID-19: The Importance of Artificial Intelligence and Digital Health During a Pandemic. In: Latifi, S. (eds) ITNG 2021 18th International Conference on Information Technology-New Generations. Advances in Intelligent Systems and Computing, 1346. Springer, Cham. https://doi.org/10.1007/978-3-030-70416-2_4
Gaviria, L., Salcido, J. P., Guda, T., Joo, L. (2014). Current trends in dental implants. Ong Assoc Oral Maxillofac Surg., 40, 50-60. http://dx.doi.org/10.5125/jkaoms.2014.40.2.50
Hanawa, T. (2010). Biofunctionalization of titanium for dental implant. Japanese Dental Science Review, 46, 93-101. https://doi.org/10.1016/j.jdsr.2009.11.001
Hickok, N. J., Shapiro, I. M., Chen, A. F. (2018). The Impact of Incorporating Antimicrobials into Implant Surfaces. J. Dent. Res., 97, 14–22. https://doi.org/10.1177/0022034517731768
Huang, X., Bai, J., Liu, X., Meng, Z., Shang, Y., Jiao, T., Chen, G., Deng, J. (2021). Scientometric Analysis of Dental Implant Research over the Past 10 Years and Future Research Trends. BioMed Research International/2021/ Article ID 6634055. https://doi.org/10.1155/2021/6634055
Iftikhar, S., Jahanzeb, N., Saleem, M., Rehman, S., Jukka Pekka Matinlinna, J.P., Khan, A.S. (2021) The trends of dental biomaterials research and future directions: A mapping review. Saudi Dental Journal, 33, 229–238. https://doi.org/10.1016/j.sdentj.2021.01.002
Jeevanandam, J., Danquah, M. K., Pan, S. (2021). Plant-Derived Nanobiomaterials as a Potential Next Generation Dental Implant Surface Modifier, Frontiers in Materials, 2021. https://doi.org/10.3389/fmats.2021.666202
Kellesarian, S. V., Malignaggi, V. R., Kellesarian, T. V., Ahmed, H. B., Javed, F. (2017). Does incorporating collagen and chondroitin sulfate matrix in implant surfaces enhance osseointegration? A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg., 2017. https://doi.org/10.1016/j.ijom.2017.10.010
Kittur, N., Oak, R., Dekate, D., Jadhav, S., Dhatrak, P. (2021). Dental implant stability and its measurements to improve osseointegration at the bone-implant interface: A review. Materials today: proceedings, 43(2), 1064-1070. https://doi.org/10.1016/j.matpr.2020.08.243
Kligman, S., Ren, Z., Chung, C., Perillo, M.A., Chang, Y., Koo, H., Zheng, Z., Li, C. (2021). The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med., 10, 1641. https://doi.org/10.3390/jcm10081641
Kothari, C. R., Garg, G. (2019), Research Methodology Methods and Techniques, 4th edn. New Age International, Nova Deli, 2019
Kunrath. M. F., Campos, M. M. (2021). Metallic-nanoparticle release systems for biomedical implant surfaces: effectiveness and safety. Nanotoxicology, 15(6), 721–739. https://doi.org/10.1080/17435390.2021.1915401
Kunrath, M. F, Diz, F. M., Magini, R., Galárraga-Vinueza, M. E. (2020). Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. Advances in Colloid and Interface Science, 284, 102265. https://doi.org/10.1016/j.cis.2020.102265
Nair L. S., Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
Nest, V. D., Smidt, L., Lubbe, D. P. (2015). The application of statistical and/or non-statistical sampling techniques by internal audit functions in the South African banking industry. Risk Gov. Control Financ. Mark. Inst., 5, 71–80.
Pachauri, P., Bathala L. R., Sangur, R. (2014). Techniques for dental implant nanosurface modifications. The journal of advanced prosthodontics, 6, 498-504. https://doi.org/10.4047/jap.2014.6.6.498
Patel, V., Sadiq, M. S., Najeeb, S., Khurshid, Z., Muhammad S., Zafar M. S., Heboyan, A. (2023). Effects of metformin on the bioactivity and osseointegration of dental implants: A systematic review. Journal of Taibah University Medical Sciences, 18(1), 196e206. https://doi.org/10.1016/j.jtumed.2022.07.003
Rasouli, R., Barhoum, A., Uludag, H. (2018). A Review of Nanostructured Surface and Materials for Dental Implants: Surface Coating, Pattering and Functionalization for Improved. Biomater. Sci., 2018. https://doi.org/10.1039/C8BM00021B
Reis, J. S. M., Silva, F. O., Espuny, M., Alexandre, L. G. L., Barbosa, L .C. F. M, Bonassa, A. C. M, Faria, A. M., Sampaio, N. A. S., Santos, G., Oliveira, O. J. (2020). The rapid escalation of publication on COVID-19: A snapshot of trends in the early month to overcome the pandemic and to I improve life quality. International Journal for Quality Research, 14(3), 951–968. https://doi.org/10.24874/IJQR14.03-19
Renvert, S., Quirynen, M. (2015). Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res., 26(11), 15-44. https://doi.org/10.1111/clr.12636.
Saghiri, M. A., Freag, P., Fakhrzadeh, A., Saghiri, A. M. (2021). Current technology for identifying dental implants: a narrative review. Jessica Eid Bulletin of the National Research Centre, 45, 7. https://doi.org/10.1186/s42269-020-00471-0
Sargolzaie, N., Moeintaghavi, A., Shojaie, H. (2017). Comparing the Quality of Life of Patients Requesting Dental Implants Before and After Implant. Open Dent J., 11, 485–491. https://doi.org/10.2174/1874210601711010485
Smeo, K., Nasher, R., Gutknecht, N. (2018). Antibacterial effect of Er,Cr:YSGG laser in the treatment of peri-implantitis and their effect on implant surfaces: a literature review. Lasers in Dental Science, 2, 63–71. https://doi.org/10.1007/s41547-018-0032-5
Souza, J.C.M., Sordi, M.B., Kanazawa, M., Ravindran, S. Henriques, B., Silva, F.S., Aparicio, C., Cooper, L.F. (2019). Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 94, 112–131. https://doi.org/10.1016/j.actbio.2019.05.045
Stavropoulos, A., Bertl, K., Winning, L., Polyzois, I. (2021). What is the influence of implant surface characteristics and/ or implant material on the incidence and progression of peri- implantitis? A systematic literature review. Clin Oral Impl Res., 32(21), 203–229. https://doi.org/10.1111/clr.13859
Wu, B., Tang, Y., Wang, K., Zhou, X., Xiang, L. (2022). Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO2 NTAs. International Journal of Nanomedicine, 17. https://doi.org/10.2147/IJN.S362720
Yeo, L. I. (2020). Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. Materials, 13, 89. https://doi.org/10.3390/ma13010089
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Talita Rodrigues de Almeida, Rubens Guimarães Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.