Evaluation of coumarin and their derivatives as Janus Kinase-3 inhibitors using a theoretical model

Authors

  • Lauro Figueroa-Valverde Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México
  • López-Ramos Maria Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México
  • Alvarez-Ramirez Magdalena Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México
  • Rosas Nexticapa Marcela Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México
  • Díaz-Cedillo Francisco Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala s/n Col. Santo Tomas, México
  • Mateu-Armad Maria Virginia Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México
  • Lopez-Gutierrez Tomas Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México

DOI:

https://doi.org/10.14295/bjs.v2i12.423

Keywords:

cancer, Janus Kinase, JAK-3, coumarin

Abstract

For several years, cancer has increased in the population, being one of the main causes of death worldwide. This clinical pathology is associated with the activation/release of various biomolecules, including the Janus kinase family (JAKs). It is important to mention that some studies indicate that some JAK inhibitors (ruxolitinib and tofacitinib) may have a significant effect on some autoimmune diseases and cancer; however, some of these drugs can produce secondary effects such as herpes zoster, infectious, acute respiratory distress and others. The aim of this study was to evaluate the interaction of coumarin and its derivatives (compounds 2 to 24) with the JAK-3 surface. In this way, the Interaction of coumarin and their derivatives with JAK-3 was determined using the 3pjc protein and either decernotinib or tofacitinib drugs as theoretical tools on DockinServer program. The results showed differences in the aminoacid residues involved in the interaction of coumarin and their derivatives with 3pjc protein surface compared with decernotinib and tofacitinib. Besides, the inhibition constant (Ki) for coumarin derivatives 7, 9 and 10 was lower compared with tofacitinib. However, Ki was lower for 2, 5, 7, 8, 9, 10, and 24 compared with decernotinib. In conclusion, the coumarin derivatives 2, 5, 7, 8, 9, 10, and 24 could be good alternatives as JAK-3 inhibitors to decrease cancer cells growth.

 

 

References

Ala, M. (2022). Target c-Myc to treat pancreatic cancer. Cancer Biology & Therapy, 23(1), 34-50. https://doi.org/10.1080/15384047.2021.2017223 DOI: https://doi.org/10.1080/15384047.2021.2017223

Aminian, A., Wilson, R., Al-Kurd, A., Tu, C., Milinovich, A., & Kroh, M. (2022). Association of bariatric surgery with cancer risk and mortality in adults with obesity. Journal of American Medical Association, 327(24), 2423-33. https://doi.org/10.1001/jama.2022.9009 DOI: https://doi.org/10.1001/jama.2022.9009

Asgari-Karchekani, S., Aryannejad, A., Mousavi, S., Shahsavarhaghighi, S., & Tavangar, S. (2022). The role of HER2 alterations in clinicopathological and molecular characteristics of breast cancer and HER2-targeted therapies: a comprehensive review. Medical Oncology, 39(12), 210. https://doi.org/10.1007/s12032-022-01817-6 DOI: https://doi.org/10.1007/s12032-022-01817-6

Banerjee, P., & Ulker, O. (2022). Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicology Mechanisms and Methods, 32(7), 542-548. https://doi.org/10.1080/15376516.2022.2053623 DOI: https://doi.org/10.1080/15376516.2022.2053623

Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. (2022). Machine-learning methods for ligand–protein molecular docking. Drug Discovery Today, 27(1), 151-164. https://doi.org/10.1016/j.drudis.2021.09.007 DOI: https://doi.org/10.1016/j.drudis.2021.09.007

Da-Rocha, M., Marinho, E., Marinho, M., & dos-Santos, H. (2022). Virtual screening in pharmacokinetics, bioactivity, and toxicity of the amburana cearensis secondary metabolites. Biointerface Research in Applied Chemistry, 12(6), 8471-8491. doi.org/10.33263/BRIAC126.84718491 DOI: https://doi.org/10.33263/BRIAC126.84718491

De-Magalhães, J. (2022). Every gene can (and possibly will) be associated with cancer. Trends in Genetics, 38(3), 216-217. https://doi.org/10.1016/j.tig.2021.09.005 DOI: https://doi.org/10.1016/j.tig.2021.09.005

Dhanasekaran, R., Deutzmann, A., Mahauad-Fernandez, W., Hansen, A., Gouw, A., Felsher, D. (2022). The MYC oncogene – the grand orchestrator of cancer growth and immune evasion. Nature Reviews Clinical Oncology, 19(1), 23-26. https://doi.org/10.1038/s41571-021-00549-2 DOI: https://doi.org/10.1038/s41571-021-00549-2

Figueroa-Valverde, L., Alvarez-Ramirez, M., Rosas-Nexticapa, M., Cedillo, F., López-Ramos, M., Mateu-Armad, M. (2021). Synthesis of two testosterone derivatives and their theoretical evaluation as serotonin reuptake transporter inhibitors. Biointerface Research in Applied Chemistry, 11, 12462-12470.

https://doi.org/10.33263/BRIAC115.1246212470 DOI: https://doi.org/10.33263/BRIAC115.1246212470

Figueroa-Valverde, L., Rosas-Nexticapa, M., Montserrat, M., Díaz-Cedillo, F., López-Ramos, M., & Alvarez-Ramirez, M. (2022). Synthesis and theoretical interaction of 3-(2-oxabicyclo [7.4. 0] trideca-1 (13), 9, 11-trien-7-yn-12-yloxy)-steroid deriva-tive with 17β-hydroxysteroid dehydrogenase enzyme surface. Biointerface Research in Applied Chemistry, 13(6), 266. https://doi.org/10.33263/BRIAC133.266 DOI: https://doi.org/10.33263/BRIAC133.266

Genovese, M., Van-Vollenhoven, R., Pacheco‐Tena, C., Zhang, Y., & Kinnman, N. (2016). VX‐509 (Decernotinib), an oral selective JAK‐3 inhibitor, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis & Rheumatology, 68(1), 46-55. https://doi.org/10.1002/art.39473 DOI: https://doi.org/10.1002/art.39473

Giaquinto, A., Miller, K., Tossas, K., Winn, R., Jemal, A., & Siegel, R. (2022). Cancer statistics for African American/black people 2022. Cancer Journal for Clinicians, 72(3): 202-29. https://doi.org/10.3322/caac.21718 DOI: https://doi.org/10.3322/caac.21718

Goutelle, S., Woillard, J., Neely, M., Yamada, W., & Bourguignon, L. (2022). Nonparametric methods in population pharmacokinetics. The Journal of Clinical Pharmacology, 62(2), 142-57. https://doi.org/10.1002/jcph.1650 DOI: https://doi.org/10.1002/jcph.1650

Gupta, R., Gupta, S., Antonios, B., Ghimire, B., & Jindal, V. (2022). Therapeutic landscape of advanced HER2-positive breast cancer in 2022. Medical Oncology, 9(12), 258. https://doi.org/10.1007/s12032-022-01849-y DOI: https://doi.org/10.1007/s12032-022-01849-y

Han, E., Wen, W., Dellinger, T., Wu, J., Lu, S., & Jove, R. (2018). Ruxolitinib synergistically enhances the anti-tumor activity of paclitaxel in human ovarian cancer. Oncotarget, 9(36), 24304-24319. https://doi.org/10.18632%2Foncotarget.24368 DOI: https://doi.org/10.18632/oncotarget.24368

Hayama, T., Hashiguchi, Y., Okamoto, K., Okada, Y., Ono, K., & Shimada, R. (2019). G12V and G12C mutations in the gene KRAS are associated with a poorer prognosis in primary colorectal cancer. International Journal of Colorectal Disease, 34, 1491-1496. https://doi.org/10.1007/s00384-019-03344-9 DOI: https://doi.org/10.1007/s00384-019-03344-9

Hecht, S., & Hatsukami, D. (2022). Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nature Reviews Cancer, 22(3), 143-155. https://doi.org/10.1038/s41568-021-00423-4 DOI: https://doi.org/10.1038/s41568-021-00423-4

Henkels, K., Farkaly, T., Mahankali, M., Segall, J., & Gomez-Cambronero, J. (2011). Cell invasion of highly metastatic MTLn3 cancer cells is dependent on phospholipase D2 (PLD2) and Janus kinase 3 (JAK3). Journal of Molecular Biology, 408(5), 850-862. https://doi.org/10.1016/j.jmb.2011.03.01 DOI: https://doi.org/10.1016/j.jmb.2011.03.017

Im, P., Yang, L., Kartsonaki, C., Chen, Y., Guo, Y., & Du, H. (2022). Alcohol metabolism genes and risks of site‐specific cancers in Chinese adults: An 11‐year prospective study. International Journal of Cancer, 150(10), 1627-1639. https://doi.org/10.1002/ijc.33917 DOI: https://doi.org/10.1002/ijc.33917

Kim, S., Choi, J., Lim, H., Lee, S., Kim, W., Cho, S., Kim, J. S., Kim, J-H., Choe, J-H., Nam, S. J., Lee, J. E., & Yang, J-H. (2009). EGF-induced MMP-9 expression is mediated by the JAK3/ERK pathway, but not by the JAK3/STAT-3 pathway in a SKBR3 breast cancer cell line. Cell Signnallig, 21(6), 892-898. https://doi.org/10.1016/j.cellsig.2009.01.034 DOI: https://doi.org/10.1016/j.cellsig.2009.01.034

Knapper, S., Mills, K., Gilkes, A., Austin, S., Walsh, V., & Burnett, A. (2006). The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood, 108(10), 3494-3503. https://doi.org/10.1182/blood-2006-04-015487 DOI: https://doi.org/10.1182/blood-2006-04-015487

Lazarus, E., & Bays, H. (2022). Cancer and obesity: an obesity medicine association (OMA) clinical practice statement (CPS) 2022. Obesity Pillars, 3, 100026. https://doi.org/10.1016/j.obpill.2022.100026 DOI: https://doi.org/10.1016/j.obpill.2022.100026

Li, S., Ma, M., Li, H., Waluszko, A., Sidorenko, T., & Schadt, E. (2017). Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Medicine, 9, 1-11. https://doi.org/10.1186/s13073-017-0478-1 DOI: https://doi.org/10.1186/s13073-017-0478-1

Lopez-Ramos, M., Figueroa-Valverde, L., Diaz-Cedillo, F., Rosas-Nexticapa, M., & Alvarez-Ramirez, M. (2023). Theoretical evaluation of twenty-cannabinoid derivatives on either androgen receptor or 5α-reductase enzyme. Clinical Cancer Investigation Journal, 12(2), 27-32. https://doi.org/10.51847/5MYimTzeXf DOI: https://doi.org/10.51847/5MYimTzeXf

Mascarenhas, J., Talpaz, M., Gupta, V., Foltz, L., Savona, M., & Paquette, R. (2017). Primary analysis of a phase II open-label trial of INCB039110, a selective JAK1 inhibitor, in patients with myelofibrosis. Haematologica, 102(2), 327-335. https://doi.org/10.3324%2Fhaematol.2016.151126 DOI: https://doi.org/10.3324/haematol.2016.151126

Mekky, A., Sanad, S., Abdelfattah, A. (2022). Tandem synthesis, antibacterial evaluation and SwissADME prediction study of new bis (1, 3, 4-oxadiazoles) linked to arene units. Mendeleev Communications, 32(5), 612-614. https://doi.org/10.1016/j.mencom. 2022.09.014 DOI: https://doi.org/10.1016/j.mencom.2022.09.014

Miller, K., Nogueira, L., Devasia, T., Mariotto, A., Yabroff, K., & Jemal, A. (2022). Cancer treatment and survivorship statistics, 2022. Cancer Journal of Clinicians, 72(5), 409-436. https://doi.org/10.3322/caac.21731 DOI: https://doi.org/10.3322/caac.21731

Nguyen, T., Kim, J., Choi, H., Maeng, H., Koo, T. (2022). Development of an LC-MS/MS method for ARV-110, a PROTAC molecule, and applications to pharmacokinetic studies. Molecules, 27(6), 1977. https://doi.org/10.3390/molecules27061977 DOI: https://doi.org/10.3390/molecules27061977

Ota, C., Suzuki, H., Tanaka, S., & Takano, K. (2022). Dispersion effect of molecular crowding on ligand-protein surface binding sites of Escherichia coli RNase HI. Langmuir, 38(47), 14497-14507. https://doi.org/10.1021/acs.langmuir.2c02625 DOI: https://doi.org/10.1021/acs.langmuir.2c02625

Pérez, S., La-Farré, M., Garcı́a, M., & Barceló, D. (2001). Occurrence of polycyclic aromatic hydrocarbons in sewage sludge and their contribution to its toxicity in the ToxAlert® 100 bioassay. Chemosphere, 45(6-7), 705-712. https://doi.org/10.1016/S0045-6535(01)00152-7 DOI: https://doi.org/10.1016/S0045-6535(01)00152-7

Phua, Z., MacInnis, R., & Jayasekara, H. (2022). Cigarette smoking and risk of second primary cancer: a systematic review and meta-analysis. Cancer Epidemiology, 78, 102160. https://doi.org/10.1016/j.canep.2022.102160 DOI: https://doi.org/10.1016/j.canep.2022.102160

Pokharkar, O., Lakshmanan, H., Zyryanov, G., & Tsurkan, M. (2022). In silico evaluation of antifungal compounds from marine sponges against COVID-19-associated mucormycosis. Marine Drugs, 20(3), 215. https://doi.org/10.3390/md20030215 DOI: https://doi.org/10.3390/md20030215

Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D., & Poroikov, V. (2022). Computational prediction of inhibitors and inducers of the major isoforms of cytochrome P450. Molecules, 7(18), 5875. https://doi.org/10.3390/molecules27185875 DOI: https://doi.org/10.3390/molecules27185875

Seshacharyulu, P., Ponnusamy, M., Haridas, D., Jain, M., Ganti, A., & Batra, S. (2012). Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 15-31. https://doi.org/10.1517/14728222.2011.648617 DOI: https://doi.org/10.1517/14728222.2011.648617

Shivanna, C., Shenoy, C., & Priya, R. (2018). Tofacitinib (selective Janus kinase inhibitor 1 and 3): a promising therapy for the treatment of alopecia areata: a case report of six patients. International Journal of Trichology, 10(3), 103-107. https://doi.org/10.4103%2Fijt.ijt_21_18 DOI: https://doi.org/10.4103/ijt.ijt_21_18

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. Cancer Journal of Clinicians, 72(1), 7-33. https://doi.org/10.3322/caac.21708 DOI: https://doi.org/10.3322/caac.21708

Sigismund, S., Avanzato, D., & Lanzetti, L. (2018). Emerging functions of the EGFR in cancer. Molecular Oncology,

(1), 3-20. https://doi.org/10.1002/1878-0261.12155 DOI: https://doi.org/10.1002/1878-0261.12155

Sowalsky, A. G., Figueiredo, L. R., Coleman, I., Gurel, B., & Bogdan, D. (2022). Assessment of androgen receptor splice variant-7 as a biomarker of clinical response in castration-sensitive prostate cancer. Clinical Cancer Research, 28(16), 3509-3525. https://doi.org/10.1158/1078-0432.CCR-22-0851 DOI: https://doi.org/10.1158/1078-0432.CCR-22-0851

Thoma, G., Nuninger, F., Falchetto, R., Hermes, E., Tavares, G., Vangrevelinghe, E., & Zerwes, H-G. (2011). Identification of a potent Janus kinase 3 inhibitor with high selectivity within the Janus kinase family. Journal of

Medicinal Chemistry, 54(1), 284-288. https://doi.org/10.1021/jm101157q DOI: https://doi.org/10.1021/jm101157q

Tu, K., Ma, T., Zhou, R., Xu, L., Fang, Y., & Zhang, C. (2022). Association between dietary fatty acid patterns and colorectal cancer risk: A large-scale case-control study in China. Nutrients, 14(20), 4375. doi.org/10.3389/fnut.2022.864098. DOI: https://doi.org/10.3390/nu14204375

Urios, A., Largeron, M., Fleury, M., & Blanco, M. (2006). A convenient approach for evaluating the toxicity profiles of in vitro neuroprotective alkylaminophenol derivatives. Free Radical Biology and Medicine, 40(5), 791-800. https://doi.org/10.1016/j.freeradbiomed.2005.10.001 DOI: https://doi.org/10.1016/j.freeradbiomed.2005.10.001

Vadivel, C., Gluud, M., Torres-Rusillo, S., Boding, L., Willerslev-Olsen, A., Buus, T., Nielsen, T. K., Persson, J. L., Bonefeld, C. M., Geisler, C., Krejsgaard, T., Fuglsang, A. T., Odum, N., & Woetmann, A. (2021). JAK3 is expressed in the nucleus of malignant T cells in cutaneous T cell lymphoma (CTCL). Cancers, 13(2), 280. https://doi.org/10.3390/cancers13020280 DOI: https://doi.org/10.3390/cancers13020280

Valluri, V., Katari, N., Khatri, C., Kasar, P., Polagani, S., Jonnalagadda, S. (2022). A novel LC-MS/MS method for simultaneous estimation of acalabrutinib and its active metabolite acalabrutinib M 27 in human plasma and application to a human pharmacokinetic study. RSC Advances, 12(11), 6631-6639. https://doi.org/10.1039/D1RA09026G DOI: https://doi.org/10.1039/D1RA09026G

Verma, A., Kambhampati, S., Parmar, S., & Platanias, L. (2003). Jak family of kinases in cancer. Cancer and Metastasis Reviews, 22, 423-434. https://doi.org/10.1023/A:1023805715476 DOI: https://doi.org/10.1023/A:1023805715476

Wan, Y., Wu, K., Wang, L., Yin, K., Song, M. (2022). Dietary fat and fatty acids in relation to risk of colorectal cancer. European Journal of Nutrition, 61(4), 1863-1873. https://doi.org/10.1007/s00394-021-02777-9 DOI: https://doi.org/10.1007/s00394-021-02777-9

Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., Yang, F., Yan, X., Zhang, S., Li, N., & Chen, W. (2022). Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chinese Medical Journal, 135(05), 584-590. https://mednexus.org/doi/full/10.1097/CM9.0000000000002108 DOI: https://doi.org/10.1097/CM9.0000000000002108

Yoo, J. E., Han, K., Shin, D. W, Kim, D., Kim, D., Kim, B-S., Chun, S., Jeon, K. H., Jung, W., Park, J., Park, J. H., Choi, K. S., & Kim, J. S. (2022). Association between changes in alcohol consumption and cancer risk. JAMA Network Open, 5(8), e2228544. https://doi.org/10.1001/jamanetworkopen.2022.28544 DOI: https://doi.org/10.1001/jamanetworkopen.2022.28544

Zhang, H-M., Li, Q., Zhu, X., Liu, W., Hu, H., Liu, T., Cheng, F., You, Y., Zhong, Z., Zou, P., Li, Q., Chen, Z., & Guo, A-Y. (2016). miR-146b-5p within BCR-ABL1–positive microvesicles promotes leukemic transformation of hematopoietic cells. Cancer Research, 76(10), 2901-2911. https://doi.org/10.1158/0008-5472.CAN-15-2120 DOI: https://doi.org/10.1158/0008-5472.CAN-15-2120

Zhang, J., & Chen, H. (2022). De novo molecule design using molecular generative models constrained by ligand–protein interactions. Journal of Chemical Information and Modeling, 62(14), 3291-306. https://doi.org/10.1021/acs.jcim.2c00177 DOI: https://doi.org/10.1021/acs.jcim.2c00177

Downloads

Published

2023-12-01

How to Cite

Figueroa-Valverde, L., Maria, L.-R., Magdalena, A.-R., Marcela, R. N., Francisco, D.-C., Virginia, M.-A. M., & Tomas, L.-G. (2023). Evaluation of coumarin and their derivatives as Janus Kinase-3 inhibitors using a theoretical model. Brazilian Journal of Science, 2(12), 106–117. https://doi.org/10.14295/bjs.v2i12.423