Clinical safety of bovine intra-ovarian application of allogeneic mesenchymal stem cells
DOI:
https://doi.org/10.14295/bjs.v2i9.383Keywords:
bovine fertility, in vitro fertilization, ovarian lesion, mesenchymal stem cellAbstract
A basic premise of reproductive physiology is that females have a finite and non-renewable stock of germinative cells, which results in a decrease in reproductive capacity over time. For female bovines, a further factor associated with this decrease is follicular puncture (ovum pickup - OPU), a technique widely used for production of embryos in vitro. As such, it is necessary to seek therapeutic or preventive options for fertility problems, and one potential option is treatment with mesenchymal stem cells (MSC), which exercise a paracrine effect in combating inflammatory and degenerative processes. However, as important as evaluating the efficacy of such treatments is an evaluation of safety. In this context, the current study was carried out with the application of 2.5 x 106 allogenic MSC derived from adipose tissue, to the ovarian cortex of healthy nelore (n = 5) and girolando (n = 5) cows. The animals were subsequently evaluated by ultrasonography, clinical examination, number of viable oocytes collected, and rate of embryo production. None of the animals presented any clinical alteration or any alteration on ultrasonography after receiving the MSC. Furthermore, comparison between the number of viable oocytes, embryos produced, and rate of embryo production before and after MSC application did not show a difference. Based on these data, it can be concluded that intraovarian application of 2.5 x 106 adipose-derived MSC is safe, and this technique represents a potential for study as a therapy in cases of ovarian degeneration or lesions.
References
Abd-Allah, S. H., Shalaby, S. M., Pasha, H. F., El-Shal A. S., Raafat, N., Shabrawy, S., et al. (2013). Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy, 15, 64-75. https://doi.org/10.1016/j.jcyt.2012.08.001 DOI: https://doi.org/10.1016/j.jcyt.2012.08.001
Adams, N. R. (1995). Detection of the effects of phytoestrogens on sheep and cattle. Journal of Animal Science, 73, 1509-1515. https://doi.org/10.2527/1995.7351509x DOI: https://doi.org/10.2527/1995.7351509x
Baerwald, A. R., Adams, G. P., Pierson, R. A. (2003). A new model for ovarian follicular development during the human menstrual cycle. Fertility and Sterility, 80, 116-122. https://doi.org/10.1016/S0015-0282(03)00544-2 DOI: https://doi.org/10.1016/S0015-0282(03)00544-2
Baglioni, S., Francalanci, M., Squecco, R., Lombardi, A., Cantini, G., Angeli, R., Gelmini, S., Guasti, D., Benvenuti, S., Annunziato, F., Bani, D., Liotta, F., Francini, F., Perigli, G., Serio, M., Luconi, M. (2009). Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB Journal, 23, 3494–3505. https://doi.org/10.1096/fj.08-126946 DOI: https://doi.org/10.1096/fj.08-126946
Byskov, A. G., Faddy, M. J., Lemmen, J. G., Andersen, C. Y. (2005). Eggs forever? Differentiation, 73, 438-46. https://doi.org/10.1111/j.1432-0436.2005.00045.x DOI: https://doi.org/10.1111/j.1432-0436.2005.00045.x
Cavalieri, F. L. B., Morotti, F., Seneda, M. M., Colombo, A. H. B., Andreazzi, M. A., Emanuelli, I. P., et al. (2018). Improvement of bovine in vitro embryo production by ovarian follicular wave synchronization prior to ovum pick-up. Theriogenology, 117, 57-60. https://doi.org/10.1016/j.theriogenology.2017.11.026 DOI: https://doi.org/10.1016/j.theriogenology.2017.11.026
Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. Journal of Pathology, 217, 318-324. https://doi.org/10.1002/path.2469 DOI: https://doi.org/10.1002/path.2469
Caplan, A. I. (2017). Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Translational Medicine, 6, 1445–1451. https://doi.org/10.1002/sctm.17-0051 DOI: https://doi.org/10.1002/sctm.17-0051
Chang, L. B., Peng, S. Y., Chou, C. J., Chen, Y. J., Shiu, J. S., Tu, P. A., et al. (2018). Therapeutic potential of amniotic fluid stem cells to treat bilateral ovarian dystrophy in dairy cows in a subtropical region. Reproduction in Domestic Animals, 53, 443-441. https://doi.org/10.1111/rda.13123 DOI: https://doi.org/10.1111/rda.13123
Cui, X., Pu, L. L. (2010). The search for a useful method for the optimal cryopreservation of adipose aspirates: part I. In vivo study. Aesthetic Surgery Journal, 30, 248-252. https://doi.org/10.1177/1090820X10374100 DOI: https://doi.org/10.1016/j.asj.2009.02.016
De Francesco, F., Ricci, G., D'Andrea, F., Nicoletti, G.F., Ferraro, G. A. (2015). Human Adipose Stem Cells: From Bench to Bedside. Tissue Engineering, 21, 572-584. https://doi.org/10.1089/ten.teb.2014.0608 DOI: https://doi.org/10.1089/ten.teb.2014.0608
De Rosa, A., De Francesco, F., Tirino, V., Ferraro, G. A., Desiderio, V., Paino, F., Pirozzi, G., D'Andrea, F., Papaccio, G. (2009). A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology. Tissue Engineering, 15, 659-667. https://doi.org/10.1089/ten.tec.2008.0674 DOI: https://doi.org/10.1089/ten.tec.2008.0674
D'Occhio, M. J., Baruselli, P. S., Campanile, G. (2018). Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology, 20, 277-284. https://doi.org/10.1016/j.theriogenology.2018.11.010 DOI: https://doi.org/10.1016/j.theriogenology.2018.11.010
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315–317. https://doi.org/10.1080/14653240600855905 DOI: https://doi.org/10.1080/14653240600855905
Elfayomy, A. K., Almasry, S. M., El-Tarhouny, S. A., Eldo-Miaty, M. A. (2016). Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: possible direct and indirect effects. Tissue Cell, 48, 370-382. https://doi.org/10.1016/j.tice.2016.05.001 DOI: https://doi.org/10.1016/j.tice.2016.05.001
Freitag, J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L., et al. (2016). Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review. BMC Musculoskelet Disorder, 17, 230. https://doi.org/10.1016/j.tice.2016.05.001 DOI: https://doi.org/10.1186/s12891-016-1085-9
Fu, X., He, Y., Xie, C., Liu, W. (2008). Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy, 10, 353–363. https://doi.org/10.1080/14653240802035926 DOI: https://doi.org/10.1080/14653240802035926
Galli, C., Duchi, R., Colleoni, S., Lagutina, I., Lazzari, G. (2014). Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice. Theriogenology, 81, 138–151. https://doi.org/10.1016/j.theriogenology.2013.09.008 DOI: https://doi.org/10.1016/j.theriogenology.2013.09.008
Harris, V. K., Vyshkina, T., Sadiq, S. A. (2016). Clinical safety of intrathecal administration of mesenchymal stromal cell–derived neural progenitors in multiple sclerosis. Cytotherapy, 18, 1476–1482. https://doi.org/10.1016/j.jcyt.2016.08.007 DOI: https://doi.org/10.1016/j.jcyt.2016.08.007
Hirshfield, A. N. (1991). Development of follicles in the mammalian ovary. International Review of Cytology, 124, 43-101. https://doi.org/10.1016/S0074-7696(08)61524-7 DOI: https://doi.org/10.1016/S0074-7696(08)61524-7
Hori, K., Matsuyama, S., Nakamura, S., Iwata, H., Kuwayama, T., Miyamoto, A., & Shirasuna, K. (2019). Age-related changes in the bovine corpus luteum function and progesterone secretion. Reproduction in Domestic Animals, 54, 23-30. https://doi.org/10.1111/rda.13303 DOI: https://doi.org/10.1111/rda.13303
Lai, D., Wang, F., Dong, Z., Zhang, Q. (2014). Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS One, 9, e98749. https://doi.org/10.1371/journal.pone.0098749 DOI: https://doi.org/10.1371/journal.pone.0098749
Lai, R. C., Tan, S. S., Yeo, R. W. Y., Choo, A. B. H., Reiner, A. T., Su, Y., ... & Lim, S. K. (2016). MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. Journal of Extracellular Vesicles, 5, 29828. https://doi.org/10.3402/jev.v5.29828 DOI: https://doi.org/10.3402/jev.v5.29828
Liang, J., Zhang, H., Kong, W., Deng, W., Wang, D., Feng, X., ... & Sun, L. (2018). Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion: a long term retrospective study. Stem Cell Research & Therapy, 9, 312. https://doi.org/10.1186/s13287-018-1053-4 DOI: https://doi.org/10.1186/s13287-018-1053-4
Lindroos, B., Suuronen, R., Miettinen, S. (2011). The potential of adipose stem cells in regenerative medicine. Stem Cell Revision, 7, 269-291. https://doi.org/10.1007/s12015-010-9193-7 DOI: https://doi.org/10.1007/s12015-010-9193-7
Marx, C., Silveira, M. D., Beyer, N. N. (2015). Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Devices, 24, 803-813. https://doi.org/10.1089/scd.2014.0407 DOI: https://doi.org/10.1089/scd.2014.0407
McGee, E. A., Hsueh, A. J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocrine Reviews, 21, 200–214. https://doi.org/10.1210/edrv.21.2.0394 DOI: https://doi.org/10.1210/edrv.21.2.0394
Mohamed, S. A., Shalaby, S. M., Abdelaziz, M., Brakta, S., Hill, W. D., Ismail, N., Al-Hendy, A. (2018). Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reproductive Sciences, 25, 51-63. https://doi.org/10.1177/1933719117699705 DOI: https://doi.org/10.1177/1933719117699705
Murphy, M. B., Moncivais, K., Caplan, A. I. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Experimental & Molecular Medicine, 45, e54. https://doi.org/10.1038/emm.2013.94 DOI: https://doi.org/10.1038/emm.2013.94
Prockop, D. J. (2007). “Stemness” does not explain the repair of many tissues by mesenchymal stem multipotent stromal cells (MSCs). Clinical Pharmacology & Therapeutics, 82, 241-243. https://doi.org/10.1038/sj.clpt.6100313 DOI: https://doi.org/10.1038/sj.clpt.6100313
Romagnoli, C., Brandi, M. L. (2014). Adipose mesenchymal stem cells in the field of bone tissue engineering. World Journal Stem Cells, 6, 144-152. https://doi.org/10.4252/wjsc.v6.i2.144 DOI: https://doi.org/10.4252/wjsc.v6.i2.144
Sampaio, R. V., Chiaratti, M. R., Santos, D. C. N., Bressan, F. F., Sangalli, J. R., Sá, A. L. A. D., ... & Ohashi, O. M. (2015). Generation of bovine (Bosindicus) and buffalo (Bubalusbubalis) adipose tissue derived stemcells: isolation, characterization, and multipotentiality. Genetic Molecular Research, 14, 53-62. https://doi.org/10.4238/2015.January.15.7 DOI: https://doi.org/10.4238/2015.January.15.7
Takehara, Y., Yabuuchi, A., Ezoe, K., Kuroda, T., Yamadera, R., Sano, C., et al. (2013). The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Laboratory Investigation, 93, 181–193. https://doi.org/10.1038/labinvest.2012.167 DOI: https://doi.org/10.1038/labinvest.2012.167
Tilly, J. L., Sinclair, D. A. (2013). Germline energetics, aging, and female infertility. Cell Metabolism, 17, 838-850. https://doi.org/10.1016/j.cmet.2013.05.007 DOI: https://doi.org/10.1016/j.cmet.2013.05.007
Woods, D. C., Tilly, J. L. (2013). Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nature Protocols, 8, 966-988. https://doi.org/10.1038/nprot.2013.047 DOI: https://doi.org/10.1038/nprot.2013.047
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Maurício Antônio Silva Peixer, Patricia Furtado Malard, Hilana dos Santos Sena Brunel, Joao Henrique Moreira Viana, Thuany Alencar-Silva, Juliana Lott de Carvalho, Robert Pogue
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.