High-resolution RCP scenario for the 21st century in the North-West region of Morocco, future projections for 2041-2060, 2061-2080 and 2081-2100

Authors

  • Wahib Hammoudy The Directorate General of Meteorology (DGM), BP 8106-Casa Oasis, Bd Mohamed Taïb Naciri Hay Hassani, Casablanca, Morocco
  • Rachid Ilmen Department of Hydraulics, Environment and Climate (HEC), Hassania School of Public Works (EHTP), Km 7, Road d'El Jadida, BP. 8108, Casablanca, Morocco
  • Mohamed Sinan Department of Hydraulics, Environment and Climate (HEC), Hassania School of Public Works (EHTP), Km 7, Road d'El Jadida, BP. 8108, Casablanca, Morocco

DOI:

https://doi.org/10.14295/bjs.v2i10.375

Keywords:

climate, temperature, modelling, extremes events, future projections

Abstract

Climate model simulations of future climate are the basis for adaptation decisions, which the effectiveness will depend on the quality of the models. A set of climate models developed under the CMIP6 project and generated by the spatial bias correction disaggregation method (BCSD) using a statistical downscaling algorithm have been used. These models are used to evaluate the future changes in thermal extremes projected by the climate models over the different time horizons with comparison to the 1981-2000 reference period. These projections are made under the scenario RCP 4.5 (optimistic). The examination of future climate change projections could confirm the result of warming over the entire North West region of Morocco. The increase in temperature could reached an average of 1.8 °C to 2.5 °C just in 2060. In the same sense of warming, the number of hot days and hot nights could increase year by year while a decrease could be noticed in the number of cold days and cold nights. The simulations for the 2080 and 2100 horizons revealed a situation that worsens year by year. The temperature anomaly could reached about 3 °C and more. Thus, a climatic warming may be predicted in the future and generalized over the entire North West region.

References

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., & Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 111 (D5), 1-22. https://doi.org/10.1029/2005JD006290 DOI: https://doi.org/10.1029/2005JD006290

Alexander, L., & Herold, N. (2016). ClimPACT2 Indices and software. A document prepared on behalf of The Commission for Climatology (CCl) Expert Team on Sector-Specific Climate Indices (ET-SCI), ARC Centre of Excellence for Climate System Science, The University of New South Wales, Sydney, Australia, pp. 46. https://awi.eprints-hosting.org/id/eprint/49274/1/ClimPACTv2_manual.pdf

Aoubouazza, M., Rajel, R., & Essafi, R. (2019). Impact des phénomènes climatiques extrêmes sur les ressources en eau et l’agriculture au Maroc. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 7(2). https://agrimaroc.org/index.php/Actes_IAVH2/article/view/705

Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographic information systems. Oxford New York: Oxford University Press.

Driouech, F., Mokssit, A. (2010). Variabilité et changements climatiques au Maroc, tendances observées et projections futures. In: Chapite 3, Changement climatique enjeux et perspectives au Maghreb, Unesco, II31-II44.

Driouech, F., Mahé Gil, D. M., Dieulin Claudine, H. T., Milano, M., Benabdelfadel, A., & Nathalie, R. (2010) Evaluation d'impacts potentiels de changements climatiques sur l'hydrologie du bassin versant de la Moulouya au Maroc. World FRIEND Conference: Global Change: Facing Risks and Threats to Water Resources. https://www.documentation.ird.fr/hor/fdi:010055009

Filahi, S., Tramblay, Y., Mouhir, L., & Diaconescu, E. P. (2017). Projected changes in temperature and precipitation indices in Morocco from high-resolution regional climate models. International Journal of Climatology, 37(14), 4846-4863. DOI: https://doi.org/10.1002/joc.5127

Giannakopoulos, G., Tzavara, C., Dimitrakaki, C., Kolaitis, G., Rotsika, V., & Tountas, Y. (2009). The factor structure of the strengths and difficulties questionnaire (SDQ) in Greek adolescents. Annals of General Psychiatry, 8. https://doi.org/10.1186/1744-859X-8-20 DOI: https://doi.org/10.1186/1744-859X-8-20

Hammoudy, W., Ilmen, R., & Sinan, M. (2022). Impact of climate change on extremes events in Morocco, IOP Conference Series: Earth and Environmental Science, 1090, 1-8. https://iopscience.iop.org/article/10.1088/1755-1315/1090/1/012034/meta DOI: https://doi.org/10.1088/1755-1315/1090/1/012034

IPCC. (2021). Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu., & B. Zhou (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York NY USA, 2391 pp.

IPCC. (2021). Summary for Policymakers. Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte V. P. Zhai A. Pirani S. L. Connors C. Péan S. Berger N. Caud Y. Chen L. Goldfarb M. I. Gomis M. Huang K. Leitzell E. Lonnoy J. B. R. Matthews T. K. Maycock T. Waterfield O. Yelekçi R. Yu., & B. Zhou (eds.)]. Cambridge University Press. Cambridge United Kingdom and New York NY, USA pp. 3-32.

Karl, T. R., Nicholls, N., & Ghazi, A. (1999). CLIVAR/GCOS/WMO Workshop on indices and indicators for climate extremes workshop summary. In: Weather and Climate Extremes, pp 3-7, Springer Netherlands Dordrecht. https://doi.org/10.1007/978-94-015-9265-9_2 DOI: https://doi.org/10.1007/978-94-015-9265-9_2

Maleika, W., Palczynski, M., & Frejlichowski, D. (2012). Méthodes d'interpolation et précision des modèles bathymétriques des fonds marins basés sur des données d'échosondeur multifaisceaux. Systèmes d'information et de base de données intelligents (ACIIDS 2012), série de livres PT III: notes de cours sur l'intelligence artificielle, 7198, 466-475.

Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E., & Zittis, G. (2016). Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137, 245-260. https://doi.org/10.1007/s10584-016-1665-6 DOI: https://doi.org/10.1007/s10584-016-1665-6

Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044-1055. https://doi.org/10.1016/j.cageo.2007.07.010 DOI: https://doi.org/10.1016/j.cageo.2007.07.010

Ponti, G., Palombi, F., Abate, D., Ambrosino, F., Aprea, G., Bastianelli, T., Beone, F., Bertini, R., Bracco, G., et al. (2014). The role of medium size facilities in the HPC ecosystem: the case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure. International Conference on High Performance Computing & Simulation (HPCS), pp. 1030-1033. https://doi.org/10.1109/HPCSim.2014.6903807 DOI: https://doi.org/10.1109/HPCSim.2014.6903807

Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., & Zhou, B. (2021). Weather and climate extreme events in a changing climate. In: Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V. P., Zhai, A., Pirani, S. L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M. I., Gomis, M., Huang, K., Leitzell, E., Lonnoy, J. B. R., Matthews, T. K., Maycock, T., Waterfield, O., Yelekçi, R., & Zhou, B. (eds.)]. Cambridge University Press, Cambridge United Kingdom and New York, NY, USA, pp. 1513-1766.

Setianto, A., & Triandini, T. (2013). Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. Journal of Applied Geology, 5(1), 21-29. https://doi.org/10.22146/jag.7204 DOI: https://doi.org/10.22146/jag.7204

Thrasher, B., Maurer, E. P., McKellar, C., & Duffy, P. B. (2012). Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16(9), 3309-3314. https://doi.org/10.5194/hess-16-3309-2012 DOI: https://doi.org/10.5194/hess-16-3309-2012

Downloads

Published

2023-10-01

How to Cite

Hammoudy, W., Ilmen, R., & Sinan, M. (2023). High-resolution RCP scenario for the 21st century in the North-West region of Morocco, future projections for 2041-2060, 2061-2080 and 2081-2100. Brazilian Journal of Science, 2(10), 63–73. https://doi.org/10.14295/bjs.v2i10.375

Issue

Section

Environmental Sciences