Effects of logic glitch and (area-power dissipation) leakage on cryptosystems using clock gating technique to enhance web etiquette

Authors

  • Akhigbe-mudu Thursday Ehis Department of Computer Science, Faculty of Applied Sciences and Engineering, African Institute of Science Administration and Commercial Studies Lome, Republic du Togo

DOI:

https://doi.org/10.14295/bjs.v2i12.364

Keywords:

clock-gating, leakages, logic glitches, power dissipation, sub-threshold leakages

Abstract

The last century has seen an evolution in technology that has improved communication systems and, in general, made life easier for people. Our communication systems have become faster and more dependable as a result of the explosion of gadgets and services. But, these upgrades come at a price. The power consumption is one of the most worrying costs. In recent years, the solution involved installing larger, more powerful batteries—so long as doing so did not limit mobility. Today's economic and environmental problems compel us to consider alternative solutions, like methods for lowering the power consumption of digital devices. This study focuses on using digital circuits, which promise to deliver good energy efficiency and desirable performance at very low voltage savings. Certain digital switches are allegedly redundant and not required for the circuit to function properly, yet they continue to use energy. So, one of the primary issues for low power design is reducing such redundant switches. Subthreshold conduction in digital circuits is typically seen as a “parasitic” leakage in a condition where there should ideally be no conduction. Sub-threshold activities thereby reduce the problem of lowering power consumption, but do so at the expense of system throughput deterioration, fluctuations in system stability and functionality, temperature variations, and most critically, design space utilization. In order to minimize some of these redundant switches and to make circuits more energy-efficient while maintaining functionality, this study suggests two novel techniques. It uses an optimization method based on threshold voltage change to reduce glitch power. A glitch-free circuit netlist is created using an algorithm, while still maintaining the requisite delay performance. Using this approach results in a 6.14% overall reduction in energy consumption.

References

Ahmadihosseini, Z., Moeinian, M., Nazemi, S., Elyasi, S., & Mohammadpour, A. H. (2020). Evaluation of the Correlation between the rs4918 Polymorphism of AHSG Gene and Coronary Artery Calcification in Patients with Coronary Artery Disease. Cardiogenetics, 10(2), 33-41. https://doi.org/10.3390/cardiogenetics10020007 DOI: https://doi.org/10.3390/cardiogenetics10020007

Anyanwu, G. O., Nwakanma, C. I., Lee, J. M., & Kim, D. S. (2022). Optimization of RBF-SVM Kernel using Grid Search Algorithm for DDoS Attack Detection in SDN-based VANET. IEEE Internet of Things Journal, 10(10), 8477-849. https://doi.org/10.1109/JIOT.2022.3199712 DOI: https://doi.org/10.1109/JIOT.2022.3199712

Anyanwu, G. O., Nwakanma, C. I., Lee, J. M., & Kim, D. S. (2023). Falsification Detection System for IoV Using Randomized Search Optimization Ensemble Algorithm. IEEE Transactions on Intelligent Transportation Systems, 24(4), 4158-4172. https://doi.org/10.1109/TITS.2022.3233536 DOI: https://doi.org/10.1109/TITS.2022.3233536

Boruga, R., & Megan, M. (2022). On Some Characterizations for Uniform Dichotomy of Evolution Operators in Banach Spaces. Mathematics, 10(19), 3704. https://doi.org/10.3390/math10193704 DOI: https://doi.org/10.3390/math10193704

Cașcaval, P., & Leon, F. (2022). Optimization Methods for Redundancy Allocation in Hybrid Structure Large Binary Systems. Mathematics, 10(19), 3698. https://doi.org/10.3390/math10193698 DOI: https://doi.org/10.3390/math10193698

Danquah, P., & Kwabena-Adade, H. (2020). Public Key Infrastructure: An Enhanced Validation Framework. Journal of Information Security, 11(4), 241-260. https://doi.org/10.4236/jis.2020.114016 DOI: https://doi.org/10.4236/jis.2020.114016

Dhivakaran, P. B., Vinodkumar, A., Vijay, S., Lakshmanan, S., Alzabut, J., El-Nabulsi, R. A., & Anukool, W. (2022). Bipartite Synchronization of Fractional-Order Memristor-Based Coupled Delayed Neural Networks with Pinning Control. Mathematics, 10(19), 3699. https://doi.org/10.3390/math10193699 DOI: https://doi.org/10.3390/math10193699

Guo, S., Yi, Z., Liu, P., Wang, G., Lai, H., Yu, K., & Xie, X. (2022). Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor. Mathematics, 10(19), 3712. https://doi.org/10.3390/math10193712 DOI: https://doi.org/10.3390/math10193712

Gupta, T., & Akhter, S. (2021). Design and Implementation of Area-Power Efficient Generic Modular Adder using Flagged Prefix Addition Approach. In: 2021 7th International Conference on Signal Processing and Communication (ICSC) (pp. 302-307). IEEE. https://doi.org/10.1109/ICSC53193.2021.9673363 DOI: https://doi.org/10.1109/ICSC53193.2021.9673363

Jiang, W. (2022). Machine Learning Methods to Detect Voltage Glitch Attacks on IoT/IIoT Infrastructures. Computational Intelligence and Neuroscience, Article ID 6044071. https://doi.org/10.1155/2022/6044071 DOI: https://doi.org/10.1155/2022/6044071

Khan, F., Zahid, M., Gürüler, H., Tarımer, İ., & Whangbo, T. (2022). An Efficient and Reliable Multicasting for Smart Cities. Mathematics, 10(19), 3686. https://doi.org/10.3390/math10193686 DOI: https://doi.org/10.3390/math10193686

Kaptchuk, G., Massacci, F., Garcia, S. N. M., & Redmiles, E. M. (2022). Introduction to the Special Issue on Security and Privacy for COVID-19. Digital Threats: Research and Practice (DTRAP), 3(3), 1-2. https://doi.org/10.1145/3549070 DOI: https://doi.org/10.1145/3549070

Lara-Nino, C. A., Diaz-Perez, A., & Morales-Sandoval, M. (2019). Energy/area-efficient scalar multiplication with binary Edwards curves for the IoT. Sensors, 19(3), 720. https://doi.org/10.3390/s19030720 DOI: https://doi.org/10.3390/s19030720

Maimuţ, D., & Matei, A. C. (2022). Speeding-Up Elliptic Curve Cryptography Algorithms. Mathematics, 10(19), 3676. https://doi.org/10.3390/math10193676 DOI: https://doi.org/10.3390/math10193676

Mısır, O., & Akar, M. (2022). Efficiency and Core Loss Map Estimation with Machine Learning Based Multivariate Polynomial Regression Model. Mathematics, 10(19), 3691. https://doi.org/10.3390/math10193691 DOI: https://doi.org/10.3390/math10193691

Mogheer, H. S., & Hasan, K. K. (2018). Implementation of Clock Gating for Power Optimizing in Synchronous Design. Tikrit Journal of Engineering Sciences, 25(3), 12-18. http://doi.org/10.25130/tjes.25.3.03 DOI: https://doi.org/10.25130/tjes.25.3.03

Pakkiraiah, C., & Satyanarayana, R. V. S. (2022). Design of Low Power Modular (x mod p) Reduction Unit Based on Switching Activity for Data Security Applications. In: Advances in VLSI and Embedded Systems: Select Proceedings of AVES 2021 (pp. 13-25). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6780-1_2 DOI: https://doi.org/10.1007/978-981-19-6780-1_2

Schoof, R. (2020). On the ideal class group of the normal closure of Q (np). Journal of Number Theory, 216, 69-82. https://doi.org/10.1016/j.jnt.2020.04.004 DOI: https://doi.org/10.1016/j.jnt.2020.04.004

Sghaier, A., Zeghid, M., Massoud, C., Ahmed, H. Y., Chehri, A., & Machhout, M. (2022). Fast Constant-Time Modular Inversion over F p Resistant to Simple Power Analysis Attacks for IoT Applications. Sensors, 22(7), 2535. https://doi.org/10.3390/s22072535 DOI: https://doi.org/10.3390/s22072535

Shahbazi, K., & Ko, S. B. (2021). Area and power efficient post-quantum cryptosystem for IoT resource-constrained devices. Microprocessors and Microsystems, 84(7), 104280. https://doi.org/10.1016/j.micpro.2021.104280 DOI: https://doi.org/10.1016/j.micpro.2021.104280

Shanmugham, S. R., & Paramasivam, S. (2018). Survey on power analysis attacks and its impact on intelligent sensor networks. IET Wireless Sensor Systems, 8(6), 295-304. https://doi.org/10.1049/iet-wss.2018.5157 DOI: https://doi.org/10.1049/iet-wss.2018.5157

Shah, N. A., Alyousef, H. A., El-Tantawy, S. A., Shah, R., & Chung, J. D. (2022). Analytical investigation of fractional-order Korteweg–De-Vries-type equations under Atangana–Baleanu–Caputo operator: Modeling nonlinear waves in a plasma and fluid. Symmetry, 14(4), 739. https://doi.org/10.3390/sym14040739 DOI: https://doi.org/10.3390/sym14040739

Sun, G., Chen, C. C., & Bin, S. (2021). Study of cascading failure in multisubnet composite complex networks. Symmetry, 13(3), 523. https://doi.org/10.3390/sym13030523 DOI: https://doi.org/10.3390/sym13030523

Sun, D. Z., & Tian, Y. (2022). Member Tampering Attack on Burmester-Desmedt Group Key Exchange Protocol and Its Countermeasure. Mathematics, 10(19), 3685. https://doi.org/10.3390/math10193685 DOI: https://doi.org/10.3390/math10193685

Theodoridis, G., Theoharis, S., Soudris, D., & Goutis, C. E. (1998). Method for minimising the switching activity of two-level logic circuits. IEE Proceedings-Computers and Digital Techniques, 145(5), 357-363. https://doi.org/10.1049/ip-cdt:19982203 DOI: https://doi.org/10.1049/ip-cdt:19982203

Varghese, J., & Sreekala, K. S. (2019). Clock-Gating: A Novel Method for Reducing Dynamic Power Dissipation on FPGAS. International Journal of Engineering Research & Technology (IJERT), 8(5), 917-922. https://doi.org/10.17577/IJERTV8IS050527

Xu, W., Zhu, Q., & Zhao, L. (2022). GlitchNet: A glitch detection and removal system for SEIS records based on deep learning. Seismological Society of America, 93(5), 2804-2817. https://doi.org/10.1785/0220210361 DOI: https://doi.org/10.1785/0220210361

Downloads

Published

2023-12-01

How to Cite

Ehis, A.- mudu T. (2023). Effects of logic glitch and (area-power dissipation) leakage on cryptosystems using clock gating technique to enhance web etiquette. Brazilian Journal of Science, 2(12), 38–52. https://doi.org/10.14295/bjs.v2i12.364