Estimate of soybean crop productivity in the 2021/22 season: Vegetation indices and Machine Learning
DOI:
https://doi.org/10.14295/bjs.v2i1.247Keywords:
Glycine max, random forest, Google Colaboratory, remote sensingAbstract
Soybean is one of the most economically important crops in the world, with Brazil being the world's largest producer of this grain. Knowing the productivity is not always possible since these are linked to the type of technology that the farm has and allows an indirect evaluation of the quality of management. Thus, the objective was to estimate the productivity of the soybean crop in the 21/22 season in southwest Goiás using vegetation indices and machine learning. The vegetation indices EVI, NDRE, NDVI, NDWI and the reflectance values of the RGB composition of the Sentinel 2A and 2B satellite were used, harmonized images, free of clouds with one before sowing, during plowing and one image after harvesting. Random points were obtained for each of the six productivity classes and vegetation index values were assigned for each date and class. The data matrix was processed on the Google Collaboratory platform using the Random Forest classifier from the Scikit-learn package. Evaluating all parameters allowed by Random Forest, the best score (0.6825) to estimate soybean productivity was obtained using the gini criteria, 85% of samples and 120 estimators, using all recurrent images of the harvest period 21/22 and images before sowing and after harvesting.
References
Acosta, J. J. B., Cabrera, M. G., Ibras, R. F., González, J. D., Chamorro, S. M. & Escobar, J. (2018). Variabilidade espacial da produtividade, perdas na colheita e lucratividade da cultura de soja. Revista Agrogeoambiental, 10(1), 27-46. http://dx.doi.org/10.18406/2316-1817v10n120181050 DOI: https://doi.org/10.18406/2316-1817v10n120181050
Alvares, C. A., Stape, J. L., Sentelhas, P. C. Gonçalves, J. D. M. & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507 DOI: https://doi.org/10.1127/0941-2948/2013/0507
Amado, T. J. C., Santi, A. L., Moreira, J. H. & Souza, L. A. (2007). Variabilidade espacial e temporal da produtividade de culturas sob sistema plantio direto. Pesquisa Agropecuária Brasileira, 42(8), 1101-1110. https://doi.org/10.1590/S0100-204X2007000800006 DOI: https://doi.org/10.1590/S0100-204X2007000800006
Atzberger, C. & Rembold, F. (2013). Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sensing, 5(3), 1335-1354. https://doi.org/10.3390/rs5031335 DOI: https://doi.org/10.3390/rs5031335
Azzari, G., Jain, M. & Lobell, D. B. (2017). Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sensing of Environment, 202, 129-141. https://doi.org/10.1016/j.rse.2017.04.014 DOI: https://doi.org/10.1016/j.rse.2017.04.014
Casado-García, Á., Heras, J. & Sanz-Sáez, A. (2019). Google Colaboratory for Quantifying Stomata in Images. In: International Conference on Computer Aided Systems Theory. Springer, Cham., 231-238. DOI: https://doi.org/10.1007/978-3-030-45096-0_29
Chioderoli, C. A., Silva, R. P., Noronha, R. H. F., Cassia, M. T. & Santos, E. P. (2012). Perdas de grãos e distribuição de palha na colheita mecanizada de soja. Revista Bragantia, 71(1), 112-121. https://doi.org/10.1590/S0006-87052012005000003 DOI: https://doi.org/10.1590/S0006-87052012005000003
Conab - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos, v. 12 – Safra 2021/22, n. 12 – Décimo segundo levantamento, setembro de 2022. Brasília, 2022.
Cunha, R. L. F., Silva, B. & Netto, M. A. S. (2018). A scalable machine learning system for preseason agriculture yield forecast. Proceedings - IEEE 14th International Conference on e-Science, e-Science 2018, 423–430. DOI: https://doi.org/10.1109/eScience.2018.00131
Gao, B. C. (1996). Ndwi - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3 DOI: https://doi.org/10.1016/S0034-4257(96)00067-3
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031 DOI: https://doi.org/10.1016/j.rse.2017.06.031
Jiang, X., Fang, S., Huang, X., Liu, Y. & Guo, L. (2021). Rice mapping and growth monitoring based on time series GF-6 images and red-edge bands. Remote Sensing, 13(4), 579. https://doi.org/10.3390/rs13040579 DOI: https://doi.org/10.3390/rs13040579
Jin, Z., Azzari, G. & Lobell, D. B. (2017). Improving the accuracy of satellite-based highresolution yield estimation: A test of multiple scalable approaches. Agricultural and Forest Meteorology, 247, 207-220. https://doi.org/10.1016/j.agrformet.2017.08.001 DOI: https://doi.org/10.1016/j.agrformet.2017.08.001
Johnson, D. M. (2014). An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141, 116-128. https://doi.org/10.1016/j.rse.2013.10.027 DOI: https://doi.org/10.1016/j.rse.2013.10.027
Kuechly, H. U., Cozacu, A., Kodl, G., Nicolai, C. & Vallentin, C. (2020) Grundlagen der Fernerkundung. Inforeihe SAPIENS: Satellitendaten für Planung, Industrie, Energiewirtschaft und Naturschutz, Deutsches Geo Forschungs Zentrum GFZ. https://doi.org/10.2312/sapiens.2020.001
Lobell, D. B. (2013). The use of satellite data for crop yield gap analysis. Field Crops Research, 43, 56-64. https://doi.org/10.1016/j.fcr.2012.08.008 DOI: https://doi.org/10.1016/j.fcr.2012.08.008
Maldaner, L. F. & Molin, J. P. (2019). Data processing within rows for sugarcane yield mapping. Scientia Agricola, 77(5), 1-8. https://doi.org/10.1590/1678-992X-2018-0391 DOI: https://doi.org/10.1590/1678-992x-2018-0391
McFeeters, S. K. (1996). The use of the Normalized Diference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714 DOI: https://doi.org/10.1080/01431169608948714
Michels, R. N., Canteri, M. G., De Aguiar, M. A., Bertozzi, J. & Dal Bosco, T. C. (2018). Reflectance as a decision-making tool for the application of fungicide to the Asian Soybean Rust. Revista de Ciências Agrárias, 41(3), 832-840. https://doi.org/10.19084/RCA17333 DOI: https://doi.org/10.19084/RCA17333
Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 DOI: https://doi.org/10.5194/hess-11-1633-2007
Pereira, L. M., Santos, S. C. C. C., Do Nascimento, J. M. & Secretti, M. L. (2021). Correlação da produtividade da soja com os atributos químicos do solo e o NDVI. Revista Brasileira de Agropecuária Sustentável, 11(1), 430-438. https://doi.org/10.21206/rbas.v11i1.12711
Ponzoni, F. J., Shimabukuro, Y. E.; Kuplich, T. M. (2012). Sensoriamento remoto aplicado ao estudo da vegetação. 2. ed. São José Dos Campos: Saraiva.
Ponzoni, F. J., Pacheco, L. R. F., Santos, S. B. & Andrades-Filho, C. O. (2015). Caracterização espectrotemporal de dosséis de Eucalyptus spp. mediante dados radiométricos TM/Landsat5. Cerne, 2(2), 267-275. DOI: https://doi.org/10.1590/01047760201521021457
Romansini, V.A., Martins, J. A., Pivetta, L. G. & et al. (2020). Índices de vegetação derivados de imagens orbitais como indicadores de produtividade da cultura da soja. In: Ribeiro, J.C. (Org.). Desenvolvimento Social e Sustentável das Ciências Agrárias 2. Ponta Grossa: Atena, 2020. DOI: https://doi.org/10.22533/at.ed.71920091010
Sakamoto, T., Gitelson, A. A. & Arkebauer, T. J. (2014). Near real-time prediction of U.S. corn yields based on time-series MODIS data. Remote Sensing of Environment, 147, 219–231. https://doi.org/10.1016/j.rse.2014.03.008 DOI: https://doi.org/10.1016/j.rse.2014.03.008
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B. & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa.
Schirmbeck, L. W., Fontana, D. C., Dalmago, G. A., Schirmbeck, J., Vargas, P. R. & Fernandes, J. M. C. (2020). Condições hídricas de lavoura de soja usando sensoriamento remoto terrestre. Agrometeoros, 27(1), 173-181. http://dx.doi.org/10.31062/agrom.v27i1.26565 DOI: https://doi.org/10.31062/agrom.v27i1.26565
Shao, Y., Campbell, J. B., Taff, G. N. & Zheng, B. (2015). An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data. International Journal of Applied Earth Observation and Geoinformation, 38, 78-87. https://doi.org/10.1016/j.jag.2014.12.017 DOI: https://doi.org/10.1016/j.jag.2014.12.017
Sharma, L. K., Bu, H., Denton, A. & Franzen, D. W. (2015). Active-optical sensors using red NDVI compared to red edge NDVI for Prediction of corn grain yield in North Dakota, USA. Sensors. 15, 27832–27853.
https://doi.org/10.3390/s151127832 DOI: https://doi.org/10.3390/s151127832
Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5(17), 1-10. https://doi.org/10.3389/feart.2017.00017 DOI: https://doi.org/10.3389/feart.2017.00017
Trindade, F. S., De Carvalho Alves, M., Noetzold, R., De Andrade, I. C. & Pozza, A. A. A. (2019). Relação espectro-temporal de índices de vegetação com atributos do solo e produtividade da soja. Revista de Ciências Agrárias, 62, 1-11. http://200.129.150.26/index.php/ajaes/article/view/2928 DOI: https://doi.org/10.22491/rca.2019.2928
Zanzarini, F. V., Pissarra, T. C., Brandão, F. J. & Teixeira, D. D. (2013). Correlação espacial do índice de vegetação (NDVI) de imagem Landsat/ETM+ com atributos do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 17, 608-614. https://doi.org/10.1590/S1415-43662013000600006 DOI: https://doi.org/10.1590/S1415-43662013000600006
Zarei, A. R.. Mahmoudi, M. R. & Moghimi, M. M. (2022). Determining the most appropriate drought index using the random forest algorithm with an emphasis on agricultural drought. Natural Hazards, 1-24. https://doi.org/10.1007/s11069-022-05579-2 DOI: https://doi.org/10.1007/s11069-022-05579-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Victor Messias Moreira, Daniel Noe Coaguila Nuñez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.