Azospirillum brasilense and Pseudomonas fluorescens applied via foliar application in sorghum cultivar Nucover 100
DOI:
https://doi.org/10.14295/bjs.v1i11.221Keywords:
Productivity, Cerrado, Growth promoters, Rooters, Dose responsesAbstract
Among the microorganisms that promote plant growth, we can highlight the genera Azospirillum and Pseudomonas. These groups of microorganisms can enhance the growth, development and yield of various plant species of agricultural interest. The objective of this study was to verify the efficacy and influence of the commercial product Biofree® based on Pseudomonas fluorescens and Azospirillum brasilense applied via foliar in sorghum. The experiment was carried out at Centro Agro Pesquisa no Cerrado, Rio Verde, Goiás State, Brazil (S 17º44'54" and W 50º51'13"). The treatments consisted of different doses 0.0; 0.3; 0.5 and 0.7 L ha-1 of Biofree® applied via foliar in V4/V5. The variables plant height, panicle size, plant stand, and grain yield were determined. Data were submitted to ANOVA analysis of variance and significance cases were submitted to the Scott-Knott mean test p < 0.05. The application of Azospirillum brasilense and Pseudomonas fluorescens (Biofree®) promoted increases in grain yield of sorghum cultivar Nucover 100.
References
Adnan, N., Nordin, S. M., Bahruddin, M. A. & Tareq, A. H. (2019). A State-of-the-art review on facilitating sustainable agriculture through green fertiliser technology adoption: assessing farmers behavior. Trends in Food Science & Technology, 86, 439-452. https://doi.org/10.1016/j.tifs.2019.02.040 DOI: https://doi.org/10.1016/j.tifs.2019.02.040
Afify, A. E.-M. M. R., El-Beltagi, H. S., Abd El-Salam, S. M. & Omran, A. A. (2011). Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. PLoS ONE, 6, 255-212. https://doi.org/10.1371/journal.pone.0025512 DOI: https://doi.org/10.1371/journal.pone.0025512
Bashan, Y. & Bashan, L. E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Advances in Agronomy, 108, 77-136. https://doi.org/10.1016/S0065-2113(10)08002-8 DOI: https://doi.org/10.1016/S0065-2113(10)08002-8
Balasubramanian, V., Madhuri, N. & Rudakiya, D. M.; Datta, M. (2020). Sweet sorghum: a potential resource for bioenergy production, refining biomass residues for sustainable energy and bioproducts. New York: Academic Press, p. 215-242, 2020. DOI: https://doi.org/10.1016/B978-0-12-818996-2.00010-7
Brennecke, K., Bertipaglia, L. M. A., Antoniazzi, A. & Souza, E. F. (2016). Inoculação da bactéria Pseudomonas fluorescens no índice de crescimento da Brachiaria decumbens spp. Revista Acadêmica Ciência Animal, 14, 217-224. https://doi.org/10.7213/academica.14.2016.24 DOI: https://doi.org/10.7213/academica.14.2016.24
Calvacante, W. S. S., Silva, N. F., Teixeira, M. B., Cabral, F. R., Corrêa, F. R. & Cunha, F. N. (2021). Comportamento de diferentes doses de bioestimulantes na cultura do sorgo. Revista Ibero Americana de Ciências Ambientais, 12(11), 45-54. http://doi.org/10.6008/CBPC2179-6858.2021.011.0005. DOI: https://doi.org/10.6008/CBPC2179-6858.2021.011.0005
Cardoso, L. M.; Pinheiro, S. S.; Martino, H. S. D.; Pinheiro-Sant’Ana, H. M. (2017). Sorghum (Sorghum bicolor L.): nutrients, bioactive compounds, and potential impact on human health. Critical Reviews in Food Science and Nutrition, 57(2), 372-390. https://doi.org/10.1080/10408398.2014.887057 DOI: https://doi.org/10.1080/10408398.2014.887057
Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; Carlan, C. L. N.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F. O.; Souza, E.; Zorita, M. D.; Bashan, L.; Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyound. Biological and Fertility of Soils, 56, 461-479. https://doi.org/10.1007/s00374-020-01463-y DOI: https://doi.org/10.1007/s00374-020-01463-y
Conab - Companhia Nacional de Abastecimento. (2022). Acompanhamento da safra brasileira de grãos. Conab, Safra 2021/22, Brasília, 8(7), 2022.
Coniglio, A., Mora, V., Puente, M. & Cassán, F. (2019). Azospirillum as biofertilizer for sustainable agriculture: Azospirillum brasilense AZ39 as a model of PGPR and field traceability. Microbial Probiotics for Agricultural Systems, 1, 45-70. https://doi.org/10.1007/978-3-030-17597-9_4 DOI: https://doi.org/10.1007/978-3-030-17597-9_4
Degener, J. F. (2015). Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany. Frontiers in Environmental Science, 3, 48. https://doi.org/10.3389/fenvs.2015.00048 DOI: https://doi.org/10.3389/fenvs.2015.00048
Domenico, P. (2019). Effect of Azospirillum brasilense on garlic (Allium sativum L.) cultivation. World Journal of Advanced Research and Reviews, 02(03), 008-013. https://doi.org/10.30574/wjarr.2019.2.3.0039 DOI: https://doi.org/10.30574/wjarr.2019.2.3.0039
Duarte, C. F. D., Cecato, U., Hungria, M., Fernandes, H. J., Biserra, T. T., Mamédio, D. & Nogueira, M. A. Inoculação de bactérias promotoras do crescimento vegetal em Urochloa ruziziensis. Research, Society and Development, 9(8), e630985978-e630985978. https://doi.org/10.33448/rsd-v9i8.5978 DOI: https://doi.org/10.33448/rsd-v9i8.5978
Ehteshami, S. M., Khavazi, K. & Asgharzadeh, A. (2018). Forage sorghum quantity and quality as affected by biological phosphorous fertilization. Grass and Forage Science, 73(4), 926-937. https://doi.org/10.1111/gfs.12388 DOI: https://doi.org/10.1111/gfs.12388
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. https://doi.org/10.1590/S1413-70542011000600001 DOI: https://doi.org/10.1590/S1413-70542011000600001
Fukami, J., Ollero, F. J., Megías, M. & Hungria, M. (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7(1), 1-13. https://doi.org/10.1186/s13568-017-0453-7 DOI: https://doi.org/10.1186/s13568-017-0453-7
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S. & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140. https://doi.org/10.1016/j.micres.2017.08.016 DOI: https://doi.org/10.1016/j.micres.2017.08.016
Gunawan, S.; Dwitasari, I.; EAHMAWATI, N.; DARMAWAN, R.; APARAMARTA, H. W.; WIDJAJA, T. Effect of process production on antinutritional, nutrition, and physicochemical properties of modified sorghum flour. Arabian Journal of Chemistry, v. 15, n. 10, 2022. DOI: https://doi.org/10.1016/j.arabjc.2022.104134 DOI: https://doi.org/10.1016/j.arabjc.2022.104134
Hungria, M. (2011). Inoculação com Azospirillum brasilense: Inovação em rendimento a baixo custo. Londrina: Embrapa Soja, n. 325, jan. 2011, 36 p. (Documentos, n. 325).
Hungria, M.; Nogueira, M. A. (2017). Inoculação de braquiárias com Azospirillum. Embrapa Soja. Folder, 2017. Disponível em: https://www.embrapa.br/en/busca-depublicacoes/-/publicacao/1085771/inoculacao-de-braquiarias-com-azospirillum. Acesso em: 11 de Novembro de 2022.
Kargapolova, K. Y.; Burygin, G. L.; Tkachenko, O. V.; Evseeva, N. V.; Pukhalskiy, Y. V.; Belimov, A. A. (2020). Effectiveness of inoculation of in vitro-grown potato microplants with rhizosphere bactéria of the genus Azospirillum. Plant Cell, Tissue and Organ Culture, v. 141, p. 351-359, 2020. DOI: https://doi.org/10.1007/s11240-020-01791-9 DOI: https://doi.org/10.1007/s11240-020-01791-9
Kazi, N., Deaker, R., Wilson, N., Muhammad, K. & Trethowan, R. (2016). The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Research, 196, 368-378. DOI: https://doi.org/10.1016/j.fcr.2016.07.012 DOI: https://doi.org/10.1016/j.fcr.2016.07.012
Leite, R. D. C., Dos Santos, J. G., Silva, E. L., Alaves, C. R., Hungria, M., Lleite, R. D. C. & Dos Santos, A. C. (2018). Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 70(1), 61-67. https://doi.org/10.1071/CP18105 DOI: https://doi.org/10.1071/CP18105
Madsen, E. L. & Alexander, M. (1982). Transport of Rhizobium and Pseudomonas through soil. Soil Science Society of America Journal, 46(3), 557-560. https://doi.org/10.2136/sssaj1982.03615995004600030023x DOI: https://doi.org/10.2136/sssaj1982.03615995004600030023x
Martins, D. C., Borges, I. D., Cruz, J. C. & Martins Netto, D. A. (2016). Produtividade de duas cultivares de milho submetidas ao tratamento de sementes com bioestimulantes fertilizantes líquidos e Azospirillum sp. Revista Brasileira de Milho e Sorgo, 15(2), 217-228. https://doi.org/10.18512/1980-6477/rbms.v15n2p217-228 DOI: https://doi.org/10.18512/1980-6477/rbms.v15n2p217-228
Michel-Briand, Y. & Baysse, C. (2002). The pyocins of Pseudomonas aeruginosa. Biochimie, 84(5-6), 499-510. https://doi.org/10.1016/S0300-9084(02)01422-0 DOI: https://doi.org/10.1016/S0300-9084(02)01422-0
Muthukumar, A., Sandhya, G. M. & Dakshayini, G. (2021). Morphological and biochemical characterization – A comparative analysis of non-commercial and commercial plant growth promoting microorganisms. International Journal of Current Microbiology and Applied Sciences, 10(2), 867-874. https://doi.org/10.20546/ijcmas.2021.1002.102 DOI: https://doi.org/10.20546/ijcmas.2021.1002.102
Nagargade, M., Tyagi, V. & Singh, M. K. (2018). Plant growth-promoting rhizobacteria: a biological approach toward the production of sustainable agriculture. Role of Rhizospheric Microbes in Soil, 205-223. https://doi.org/10.1007/978-981-10-8402-7_8 DOI: https://doi.org/10.1007/978-981-10-8402-7_8
Nakao, A. H., Andreotti, M., Soares, D. A., Modesto, V. C. & Dickmann, L. (2018). Intercropping Urochloa brizantha and sorghum inoculated with Azospirillum brasilense for silage. Revista Ciência Agronômica, 49(3), 501-511. https://doi.org/10.5935/1806-6690.20180057 DOI: https://doi.org/10.5935/1806-6690.20180057
Nunes, L. R. Milho em segunda safra: espaçamento entre linhas, consórcio com Urochloa brizantha e coinoculação de Azospirillum brasilense e Pseudomonas fluorescens. Dissertação (Mestrado), Instituto Federal Goiano, Campus Rio Verde, Rio Verde, Goiás, Brasil, 2021.
Oliveira, M. A., Zucareli, C., Ferreira, A. S., Domigues, A. R., Spolaor, L. T. & Neves, C. S. V. J. (2015). Adubação fosfatada associada à inoculação com Pseudomonas fluorescens no desempenho agronômico do milho. Revista de Ciências Agrárias, 1(38), 18-25. https://doi.org/10.19084/rca.16864
Quadros, P. D., Roesch, L. F. W., Silva, P. R. F., Vieira, V. M., Roehrs, D. D. & Camargo, F. A. O. (2014). Desempenho agronômico a campo de híbridos de milho inoculados com Azospirillum. Revista Ceres, 61(2), 209-218. https://doi.org/10.1590/S0034-737X2014000200008 DOI: https://doi.org/10.1590/S0034-737X2014000200008
Reis Junior, F. B. D., Machado, C. T. D. T., Machado, A. T. & Sodek, L. (2012). Inoculação de Azospirillum amazonense em dois genótipos de milho sob diferentes regimes de nitrogênio. Revista Brasileira de Ciência do Solo, 32, 1139-1146. https://doi.org/10.1590/S0100-06832008000300022 DOI: https://doi.org/10.1590/S0100-06832008000300022
Roby, M. C., Salas Fernandez, M. G., Heaton, E. A., Miguez, F. E. & Vanloocke, A. (2017). Biomass sorghum and maize have similar water-use-efficiency under nondrought conditions in the rain-fed Midwest U. S. Agricultural and Forest Meteorology, 247, 434-444. https://doi.org/10.1016/j.agrformet.2017.08.019 DOI: https://doi.org/10.1016/j.agrformet.2017.08.019
Sandini, I. E., Pacentchuk, F., Hungria, M., Nogueira, M. A., Cruz, S. P., Nakatani, A. S. & Araújo, R. S. (2019). Seed inoculation with Pseudomonas fluorescens promotes growth, yield and reduces nitrogen applications in maize. International Journal of Agriculture &
Biology, 22(6), 1369-1375. https://doi.org/10.17957/IJAB/15.1210
Santos, H. G., Jacomine, P. K. T., Dos Aanjos, L. H. C., De Oliveira, V. A., Lumbreras, J. F., Coelho, M. R. & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. 5ª Ed., Brasília: Embrapa, 2018. 355 p.
Shafeek, M. R., Rakha, M. K. A., Mahmoud, A. R. & Ali, A. H. (2018). Impact of inocularion with P-fixers bacteria and nutrient compound on growth, yield and nutritional values of garlic plant (Allium sativum L.). Middle East Journal of Agriculture, 07(03), 816-825. https://www.curresweb.com/mejar/mejar/2018/816-825.pdf
Silva, N. F., Cunha, F. N., Teixeira, M. B., Soares, F. A. L., Vidal, V. M. & Morais, W. A. (2017). Reposição hídrica e adubação nitrogenada na cana-de-açúcar via gotejamento subsuperficial: cana-planta e cana-soca. Revista Brasileira de Agricultura Irrigada, 11(6), 1862. https://doi.org/10.7127/rbai.v11n600642 DOI: https://doi.org/10.7127/rbai.v11n600642
Souza, R. M. D. (2022). Coinoculação de alho com Azospirillum brasilense e Pseudomonas fluorescens. Trabalho de conclusão de curso (Graduação). Universidade Federal de Santa Catarina, p. 68.
Taleon, V., Dykes, L., Rooney, W. L. & Rooney, L. W. (2012). Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. Journal Cereal Science, 56(2), 470-475. https://doi.org/10.1016/j.jcs.2012.05.001 DOI: https://doi.org/10.1016/j.jcs.2012.05.001
Taylor, J. R. N. Sorghum and Millets: Taxonomy, History, Distribution, and Production. Sorghum and Millets. AACC International Press, 2019. p. 1-21. https://doi.org/10.1016/B978-0-12-811527-5.00001-0 DOI: https://doi.org/10.1016/B978-0-12-811527-5.00001-0
Trindade, V. D. R., Viana, R. S., Sá, M. E., Máximo, A. L. S. & Andrade, M. G. O. (2020). Características agronômicas de sorgo dupla aptidão submetidos à aplicação de extrato de algas e Azospirillum brasilense via foliar. Research, Society and Development, 9(8). http://dx.doi.org/10.33448/rsd-v9i8.5172 DOI: https://doi.org/10.33448/rsd-v9i8.5172
Valverde, C., Gonzalez Anta, G. & Ferraris, G. (2015). Pseudomonas and Azospirillum. Handbook for Azospirillum. Springer, Cham, p. 389-409. https://doi.org/10.1007/978-3-319-06542-7_21 DOI: https://doi.org/10.1007/978-3-319-06542-7_21
Xiong, Y., Zhang, P., Warner, R. D. & Fang, Z. (2019). Sorghum grain: from genotype, nutrition, and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2025-2046. https://doi.org/10.1111/1541-4337.12506 DOI: https://doi.org/10.1111/1541-4337.12506
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rogério Soares da Silva, Antonio Carlos Pereira de Menezes Filho, Hellen Regina Fernandes Batista-Ventura, Fernando Rezende Côrrea, Matheus Vinicius Abadia Ventura
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.