Hydrogels based on cashew tree gum and poly(acrylic acid) as potential water suppliers in agriculture
DOI:
https://doi.org/10.14295/bjs.v1i4.113Keywords:
Hydrogel, Cashew Gum, Poly(acrylic acid), Swelling, AgricultureAbstract
Two series of hydrogels called HG1/HG2 consisting of the cashew gum polysaccharide (GC) and polyacrylate poly(acrylic acid) with absorbent capacity and controlled water release, were prepared by polymerization in aqueous solution in the presence of the crosslinking agent N’N’-methylene-bis-acrylamide (MBA) and the reaction initiator potassium persulfate (KPS) under heating and varying the concentration of crosslinker and monomeric. Cashew gum was purified by precipitation in ethanol and studied for parameters of acidity content, conductimetry, yield and macroscopic aspects. Infrared FTIR analysis revelead that GC was modified by insertion into the poly(acrilyc acid) chain, and cross-linking between chains was due to the presence of MBA. The insertion of the GC and the presence of acidic groups gave the polymers absorbent and pH-response properties. In vitro swelling analyzes varying Ph conditions, sal concentration in reversible cycles provided information on degradability through gel phase formation. The degree pf absorption and release simuling application to agricultural soil, showed that hydrogels have application potential as water supply systems, however, the hydrogel with lower monomeric and crosslinking proportions was more promising.
References
Aguirre-Londoño, J., Aristizabal-Ferreira, V. A., Castro Narváez, S. P., & Ramírez-Navas, J. S. (2019). Conductimetry: A rapid alternative technique for chlorides determination in cheese. Universitas Scientiarum, 24(2), 307–322. https://doi.org/10.11144/javeriana.sc24-2.cara. DOI: https://doi.org/10.11144/Javeriana.SC24-2.cara
Aniket Kalhapure, Rajeew Kumar, & Singh, V. P. (2016). Hydrogels: a boon for increasing agricultural productivity in water-stressed environment. Current Science, 111(11), 1773–1779. DOI: https://doi.org/10.18520/cs/v111/i11/1773-1779
Abd El-Mohdy, H. L., Hegazy, E. A., El-Nesr, E. M., El-Wahab, M. A. (2013) Metal Sorption Behavior of Poly(N- vinyl-2-pyrrolidone)/(Acrylic Acid-Co-Styrene). Journal of Environmental Chemistry Engineering, 1, 328-338. http://dx.doi.org/10.1016/j.jece.2013.05.013. DOI: https://doi.org/10.1016/j.jece.2013.05.013
Abd El-Mohdy, H. L., & Ghanem, S. (2008). Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. Journal of Polymer Research, 16(1), 1–10. https://doi.org/10.1007/s10965-008-9196-0. DOI: https://doi.org/10.1007/s10965-008-9196-0
Anderson, P.C. Bell, A. (1975). Chimica Acta, 79, 185. DOI: https://doi.org/10.1016/S0003-2670(00)89430-1
Brito, C. W., Rodrigues, F. H., Fernandes, M. V., Silva, L. R., Ricardo, N. M., Feitosa, J. P., & Muniz, E. C. (2013). Síntese E caracterização de hidrogéis compósitos a partir de copolímeros acrilamida-acrilato e caulim: Efeito da Constituição de Diferentes caulins do Nordeste Brasileiro. Química Nova, 36(1), 40–45. https://doi.org/10.1590/s0100-40422013000100008. DOI: https://doi.org/10.1590/S0100-40422013000100008
Brooks, B. (2010). Suspension polymerization processes. Chemical Engineering & Technology, 33(11), 1737–1744. https://doi.org/10.1002/ceat.201000210. DOI: https://doi.org/10.1002/ceat.201000210
Capek, I. (2019). Solution radical polymerization. Nanocomposite Structures and Dispersions, 95–174. https://doi.org/10.1016/b978-0-444-63748-2.00002-x. DOI: https://doi.org/10.1016/B978-0-444-63748-2.00002-X
Chavda, H. V., & Patel, C. N. (2011). Effect of crosslinker concentration on characteristics of superporous hydrogel. International Journal of Pharmaceutical Investigation, 1(1), 17. https://doi.org/10.4103/2230-973x.76724. DOI: https://doi.org/10.4103/2230-973X.76724
Costa, S., Rodrigues, J., & de Paula, R. (1996). Monitorização do Processo de Purificacão de Gomas Naturais: Goma do Cajueiro. Polímeros: Ciência eTecnologia, 6, 49–55.
Da Silva D.A., de Paula R.C.M., Feitosa J.P.A. Graft copolymerisation of acrylamide onto cashew gum. Eur. Polym. J., 43, 2620–2629. https://doi.org/10.1016/j.eurpolymj.2007.03.041. DOI: https://doi.org/10.1016/j.eurpolymj.2007.03.041
Erizal, E. (2012). Synthesis of poly(acrylamide-co-acrylic acid)-starch based superabsorbent hydrogels by gamma radiation: study its swelling behaviorindo. J. Chem, 12, 113. DOI: https://doi.org/10.22146/ijc.21349
El-Mohdy, H. A.; Hegazy, E. S. A.; Abd El-Rehim, H. A. J. (2006). Macromol. Sci. A, 43, 1051. DOI: https://doi.org/10.1080/10601320600740249
Griveau, L., Lafont, M., le Goff, H., Drouglazet, C., Robbiani, B., Berthier, A., Sigaudo-Roussel, D., Latif, N., Visage, C. L.,
Gache, V., Debret, R., Weiss, P., & Sohier, J. (2021). Design and characterization of an in vivo injectable hydrogel with effervescently generated porosity for Regenerative Medicine Applications. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2021.11.036. DOI: https://doi.org/10.1016/j.actbio.2021.11.036
Ghobashy, M.M.; El-Damhougy, B.K.; Nady, N.; El-Wahab, H.A.; Naser, A.M.; Abdelhai, F. (2018). Radiation Crosslinking of Modifying Super Absorbent (Polyacrylamide/Gelatin) Hydrogel as Fertilizers Carrier and Soil Conditioner. J. Polym. Environ., 26, 3981–3994. DOI: https://doi.org/10.1007/s10924-018-1273-9
Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., Rubira, A. F., & Muniz, E. C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A Review. European Polymer Journal, 72, 365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017. DOI: https://doi.org/10.1016/j.eurpolymj.2015.04.017
Guilherme M. R., Reis A. V., Feitosa J. P. A., Muniz E. C. (2005). Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr. Polym., 61, 464–471. doi: 10.1016/j.carbpol.2005.06.017. DOI: https://doi.org/10.1016/j.carbpol.2005.06.017
Horkay, F. (2021). Polyelectrolyte Gels: A Unique Class of Soft Materials. Gels, 7, 102. https://doi.org/10.3390/gels7030102. DOI: https://doi.org/10.3390/gels7030102
H. Gulrez, S. K., Al-Assaf, S., & O, G. (2011). Hydrogels: Methods of preparation and characterisation and applications. Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications. https://doi.org/10.5772/24553. DOI: https://doi.org/10.5772/24553
Ilare, J., & Sponchioni, M. (2020). From batch to continuous free-radical polymerization: Recent advances and hurdles along the industrial transfer. Advances in Polymer Reaction Engineering, 229–257. https://doi.org/10.1016/bs.ache.2020.07.005. DOI: https://doi.org/10.1016/bs.ache.2020.07.005
Kaczmarek, B., Nadolna, K., & Owczarek, A. (2020). The physical and chemical properties of hydrogels based on natural polymers. Hydrogels Based on Natural Polymers, 151–172. https://doi.org/10.1016/b978-0-12-816421-1.00006-9. DOI: https://doi.org/10.1016/B978-0-12-816421-1.00006-9
Louf, J.-F., Lu, N. B., O’Connell, M. G., Cho, H. J., & Datta, S. S. (2021). Under pressure: Hydrogel swelling in a granular medium. Science Advances, 7(7). https://doi.org/10.1126/sciadv.abd2711. DOI: https://doi.org/10.1126/sciadv.abd2711
Leberfinger, A. N., Ravnic, D. J., Dhawan, A., & Ozbolat, I. T. (2017). Concise review: Bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Translational Medicine, 6(10), 1940–1948. https://doi.org/10.1002/sctm.17-0148 DOI: https://doi.org/10.1002/sctm.17-0148
Lamichhane, S., Bal Krishna, K. C., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (pahs) removal by Sorption: A Review. Chemosphere, 148, 336–353. https://doi.org/10.1016/j.chemosphere.2016.01.036. DOI: https://doi.org/10.1016/j.chemosphere.2016.01.036
Liu, W.-Y. (2014). Effect of different temperatures and parameters analysis of the storage life of fresh cucumber and tomato using controlled atmosphere technology. American Journal of Food Technology, 9(2), 117–126. https://doi.org/10.3923/ajft.2014.117.126. DOI: https://doi.org/10.3923/ajft.2014.117.126
Maciel, J. da S. (2005). Géis de goma de cajueiro e derivados com quitosana: síntese, caracterização e ensaios preliminares em sistemas de liberação de fármacos (thesis). UFC, Fortaleza. 144 p.
Madduma‐Bandarage, U. S., & Madihally, S. V. (2020). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138(19), 50376. https://doi.org/10.1002/app.50376 DOI: https://doi.org/10.1002/app.50376
Mahon, R., Balogun, Y., Oluyemi, G., & Njuguna, J. (2019). Swelling performance of sodium polyacrylate and poly(acrylamide-co-acrylic acid) potassium salt. SN Applied Sciences, 2(1). https://doi.org/10.1007/s42452-019-1874-5 DOI: https://doi.org/10.1007/s42452-019-1874-5
Menezes Filho, A. C. P., Ventura, M. V. A., Batista-Ventura, H. R. F., Castro, C. F. S., Triches, C. M. F., Porfiro, C. A., Guimaraes, J. S., Teixeira, M. B., Soares, F. A. L., Taques, A. S. (2021). Phytochemical study and in vitro biological activities of Chlorella vulgaris, Chlorella pyrenoidosa and Chlorella minutissima extracts. Avances en Química, 16, 71-79.
Menezes Filho, A. C. P., Sousa, W. C., Castro, C. F. S. (2020a). Caracterização química e atividades antioxidante e antifúngica do óleo essencial das flores de [Cochlospermum regium (Mart. ex Schrank.) Pilger] (Bixaceae). Principia, 1, 80-91. DOI: https://doi.org/10.18265/1517-0306a2020v1n52p80-91
Menezes Filho, A. C. P., Santos, D. B., Nascimento, R. C., Oliveira, M. S., Castro, C. F. S. (2020b). Physicochemical evaluation and antifungal activity of essential oil from Bauhinia forficate flower Link (Fabaceae). Revista de Agricultura Neotropical, 7, 57-61. DOI: https://doi.org/10.32404/rean.v7i2.4264
Menezes Filho, A. C. P., Castro, C. F. S. (2020). Análise morfológica foliar de Anacardium humile A. St. –Hil. (Anacardiaceae). Revista da Universidade Vale do Rio Verde, 1, 480-485.
Menezes, A. C. P. F., Souza, J. C. P., Castro, C. F. S. (2019). Avaliação das características poliméricas do biofilme do resíduo de melancia. Scientia Plena, 15, 1-11. DOI: https://doi.org/10.14808/sci.plena.2019.080202
Mishra, Vivek; KUMAR, Rajesh. Living radical polymeraization: a review. Journal Of Scientific Research, Varanasi, v. 56, p. 141-176. 2012.
M. Milas, "Polieletrólitos", ed. RAM.C. Groote eAAS. Curvelo, USP, São Carlos, 1991; bl M. Rinaudo, Comunicação Pessoal.
Neethu, T. M., Dubey, P. K., & Kaswala, A. R. (2018). Prospects and applications of Hydrogel Technology in agriculture. International Journal of Current Microbiology and Applied Sciences, 7(05), 3155–3162. https://doi.org/10.20546/ijcmas.2018.705.369. DOI: https://doi.org/10.20546/ijcmas.2018.705.369
Palmese, L. L., Thapa, R. K., Sullivan, M. O., & Kiick, K. L. (2019). Hybrid Hydrogels for Biomedical Applications. Current Opinion in Chemical Engineering, 24, 143–157. https://doi.org/10.1016/j.coche.2019.02.010. DOI: https://doi.org/10.1016/j.coche.2019.02.010
Peppas, N. A., Slaughter, B. V., & Kanzelberger, M. A. (2012). Hydrogels. Polymer Science: A Comprehensive Reference, 385–395. https://doi.org/10.1016/b978-0-444-53349-4.00226-0. DOI: https://doi.org/10.1016/B978-0-444-53349-4.00226-0
Rodrigues Sousa, H., Lima, I. S., Neris, L. M. L., Silva, A. S., Santos Nascimento, A. M. S., Araújo, F. P., Ratke, R. F., Silva, D. A., Osajima, J. A., Bezerra, L. R., et al. (2021). Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients. Molecules, 26, 2680.
https://doi.org/10.3390/molecules26092680. DOI: https://doi.org/10.3390/molecules26092680
Rodrigues, J. F., Paula, R. C. M. D., Costa, S. M. O. (1993). Métodos de Isolamento de Gomas Naturais: Comparação Através da Goma do Cajueiro (Anacardium occidentale L). Polim. Ciência E Tecnol, 31–36.
Singh, N., Agarwal, S., Jain, A., Khan, S. (2021). 3-dimensional cross linked hydrophilic polymeric network “hydrogels”: An agriculture boom. Agricultural Water Management, 253, 106939. https://doi.org/10.1016/j.agwat.2021.106939. DOI: https://doi.org/10.1016/j.agwat.2021.106939
Sarmah, D., & Karak, N. (2019). Biodegradable superabsorbent hydrogel for water holding in soil and controlled‐release fertilizer. Journal of Applied Polymer Science, 137(13), 48495. https://doi.org/10.1002/app.48495. ¬¬¬ DOI: https://doi.org/10.1002/app.48495
Silva, D. R. (2013). Obtenção e caracterização de micropartículas utilizando goma do cajueiro (thesis). 2013, Paraíba. Retrieved 2022, from https://1library.org/document/zkkx3e8z-obtencao-caracterizacao-de-microparticulas-utilizando-goma-de-cajueiro.html.
Singh, V., Tiwari, A., Narayan, D., Sanghi, R. (2006). Microwave enhanced synthesis of chitosan- graft -polyacrylamide. Polymer, 47, 254–260. DOI: https://doi.org/10.1016/j.polymer.2005.10.101
Tanan W., Panichpakdee J., Saengsuwan S. (2019). Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. Eur. Polym. J., 112, 678–687. doi: 10.1016/j.eurpolymj.2018.10.033. DOI: https://doi.org/10.1016/j.eurpolymj.2018.10.033
Thakur S., Arotiba O.A. Synthesis, swelling and adsorption studies of a pH-responsive sodium alginate–poly (acrylic acid) superabsorbent hydrogel. Polym. Bull. 2018;75:4587–4606. doi: 10.1007/s00289-018-2287-0. DOI: https://doi.org/10.1007/s00289-018-2287-0
Wang, Y., Zhu, K., Cui, Z., Li, H., & Wei, J. (2019). Evaluation of water cooling heat sink performance and dynamic flow effect. Energy Procedia, 158, 2417–2422. https://doi.org/10.1016/j.egypro.2019.01.294. DOI: https://doi.org/10.1016/j.egypro.2019.01.294
Wang, W., Wang, A. (2010). Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydrate Polymers, 80(4), 1028-1036. http://dx.doi.org/10.1016/j.carbpol.2010.01.020. DOI: https://doi.org/10.1016/j.carbpol.2010.01.020
Wróblewska, K. B., Jadach, B., & Muszalska-Kolos, I. (2021). Progress in drug formulation design and delivery of medicinal substances used in ophthalmology. International Journal of Pharmaceutics, 607, 121012. https://doi.org/10.1016/j.ijpharm.2021.121012. DOI: https://doi.org/10.1016/j.ijpharm.2021.121012
Wu, Z., Zhang, P., Zhang, H., Li, X., He, Y., Qin, P., & Yang, C. (2022). Tough porous nanocomposite hydrogel for water treatment. Journal of Hazardous Materials, 421, 126754. https://doi.org/10.1016/j.jhazmat.2021.126754. DOI: https://doi.org/10.1016/j.jhazmat.2021.126754
Wu, C.-H., Sun, M.-K., Kung, Y., Wang, Y.-C., Chen, S.-L., Shen, H.-H., Chen, W.-S., & Young, T.-H. (2020). One injection for one-week controlled release: In vitro and in vivo assessment of ultrasound-triggered drug release from injectable thermoresponsive biocompatible hydrogels. Ultrasonics Sonochemistry, 62, 104875. https://doi.org/10.1016/j.ultsonch.2019.104875. DOI: https://doi.org/10.1016/j.ultsonch.2019.104875
Xue, X., Hu, Y., Wang, S., Chen, X., Jiang, Y., & Su, J. (2021). Fabrication of physical and chemical crosslinked hydrogels for Bone Tissue Engineering. Bioactive Materials. https://doi.org/10.1016/j.bioactmat.2021.10.029. DOI: https://doi.org/10.1016/j.bioactmat.2021.10.029
Yang, J., Shen, M., Wu, T., Luo, Y., Li, M., Wen, H., & Xie, J. (2020). Role of salt ions and molecular weights on the formation of Mesona chinensis polysaccharide-chitosan polyelectrolyte complex hydrogel. Food Chemistry, 333, 127493. https://doi.org/10.1016/j.foodchem.2020.127493. DOI: https://doi.org/10.1016/j.foodchem.2020.127493
Y. Abu-Thabit, N. (2017). Thermochemistry of acrylamide polymerization: An illustration of auto-acceleration and gel effect. World Journal of Chemical Education, 5(3), 94–101. https://doi.org/10.12691/wjce-5-3-3. DOI: https://doi.org/10.12691/wjce-5-3-3
Zhang, X., Wan, H., Lan, W., Miao, F., Qin, M., Wei, Y., Hu, Y., Liang, Z., & Huang, D. (2022). Fabrication of adhesive hydrogels based on poly (acrylic acid) and modified hyaluronic acid. Journal of the Mechanical Behavior of Biomedical Materials, 126, 105044. https://doi.org/10.1016/j.jmbbm.2021.105044. DOI: https://doi.org/10.1016/j.jmbbm.2021.105044
Zhang, Y. S., & Khademhosseini, A. (2017). Advances in engineering hydrogels. Science, 356(6337). https://doi.org/10.1126/science.aaf3627. DOI: https://doi.org/10.1126/science.aaf3627
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 José Hermeson da Silva Soares
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.