Phytochemical prospecting, vitamins, total phenolics and flavonoids, and antioxidant and acetylcholinesterase activities of Scleroderma citrinum Persoon (Sc) mushroom extract
DOI:
https://doi.org/10.14295/bjs.v3i12.696Keywords:
Gasteromycetes, Scleroderma genus, Scleroderma citrinum, DPPH, FRAPAbstract
Scleroderma is a genus of Gasteromycetes and Basidiomycota mushrooms in tropical and subtropical regions. This study aimed to evaluate the ethanolic extract of the mushroom Scleroderma citrinum regarding phytochemical prospecting, vitamin, phenolic, and total flavonoid content, and antioxidant (FRAP and DPPH) and acetylcholinesterase (AChE) inhibition activities. Fruiting bodies of S. citrinum were collected and the ethanolic extract was produced by maceration. Phytochemical prospecting was performed for several phytochemical groups using colorimetric means; the content of vitamins A, B, C, D, and E was obtained qualitatively by colorimetric methods, the content of phenolic and flavonoids by the colorimetric method and quantification by spectrophotometry. The spectrophotometric method performed the antioxidant activity in reducing FRAP and DPPH radicals by spectrophotometry and the acetylcholinesterase inhibition activity. Seventeen positive phytochemical groups were observed, the qualitative presence of vitamins of the A, B, and D complexes, 195.03 mg GAE g-1 of total phenolics, 93.10 mg QE g-1 of total flavonoids, FRAP reduction of 3.941 µM TE g-1, DPPH reduction of 127.78 µg mL-1 and AChE inhibition of 55.6%. The extract of the mushroom Scleroderma citrinum proved to be rich in phytocompounds, vitamins, and important biological antioxidant and acetylcholinesterase inhibition effects.
References
Alvarez-Parrilla, E., De La Rosa, L. A., Martínez, N. R., Aguilar González, G. A. (2007). Total phenols and antioxidant activity of commercial and wild mushrooms from Chihuahua, Mexico. Ciencia Y Tecnologia Alimentaria, 5(5), 329-334.
Assemie, A., Abaya, G. (2007). The effect of edible mushrooms on health and their biochemistry. International Journal of Microbiology, 2022, 1-7. https://doi.org/10.1155/2022/8744788
Azieana, J., Zainon, M. N., Noriham, A., Rohana, M. N. (2017). Total phenolic and flavonoid content and antioxidant activities of ten Malaysian wild mushrooms. Open Access Library Journal, 4, e3987. https://doi.org/10.4236/oalib.1103987
Balamurugan, V., Sheerin Fatima, M. A., Velurajan, S. (2019). A guide to phytochemical analysis. International Journal of Advance Research and Innovative Ideas in Education - IJARIIE, 5(1), 236-245. https://doi.org/16.0415/IJARIIE-9430
Barbosa, D. A., Lucena, R. F. P., Cruz, D. D. (2019). Traditional knowledge as basis for phytochemical prospecting of Sideroxylon obtusifolium (Roem. & Schult.) T. D. Penn. Aiming at conservation in the Brazilian semi-arid zone. Ethnobotany Research & Applications, 18(3), 1-10, 2019. http://doi.org/10.32859/era.18.3.1-10
Bilski, P., Li, M. Y., Ehrenshaft, M., Daub, M. E., Chignell, C. F. (2000). Vitamin B6 (Pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochemistry and Photobiology, 71(2), 129-134. https://doi.org/10.1562/0031-8655(2000)0710129SIPVBP2.0.CO2
Borthakur, M., Joshi, S. R. (2017). Pigskin poison earthball mushroom of Meghalaya: An identification paradox. The NEHU Journal, 15(1), 65-78.
Brunner, I., Amiet, R., Zollinger, M., Egli, S. (1992). Ectomycorrhizal synthesis with Pinus abies and three fungal species: a case study on the use of an in vitro technique to identify naturally occurring ectomycorrhizae. Mycorrhiza, 2(2), 89-96.
Carrillo-González, R., González-Chávez, M. C. A. (2011). Tolerance to and accumulation of Cadmium by the mycelium of the fungi Scleroderma citrinum and Pisolithus tinctorius. Biological Trace Element Research, 146, 388-395. https://doi.org/10.1007/s12011-011-9267-7
Carvalho, G. G., Peres, G. C., Mendonça, R. M. C., Santos Filho, E. X. (2020). Phytochemical prospection and antibacterial activity of native plants from the cerrado of goiás, Brazil. Journal of Pharmacognosy and Phytochemistry, 9(2), 29-37.
Chaiyasut, C., Sivamaruthi, B. S. (2017). Anti-hyperglycemic property of Hericium erinaceus - a mini review. Asian Pacific Journal of Tropical Biology, 7(11), 1036-1040. https://doi.org/10.1016/j.apjtb.2017.09.024
Chaudhary, P., Panth, N., Raut, M., Shrestha, N. P. N., Shakya, S., Mishra, B. T. A. D., Parajuli, N. (2023). Biochemical, antimicrobial, and antioxidant activities of some wild mushrooms from Nepal. Bibechana, 20(2), 161-175. https://doi.org/10.3126/bibechana.v20i2.54887
Elawady, M., Hamed, A. A., Alsallami, W. M., Gabr, E. Z., Abdel-Monem, M. O., Hassan, M. G. (2023). Bioactive metabolite from endophytic Aspergillus versicolor SB5 with anti-acetylcholinesterase, anti-inflammatory and antioxidant activities: In vitro and in silico studies. Microorganisms, 11(4), 1062. https://doi.org/10.3390/microorganisms11041062
El-Dawy, E. G. A., Gherbawy, Y. A., Hussein, M. A. (2024). Characterization of Aspergillus section Flavi associated with stored grains. Mycotoxin Research, 40, 187-202. https://doi.org/10.1007/s12550-023-00514-1
Ferreira, W. U., Menezes Filho, A. C. P., Sharma, P., Castro, C. F. S., Ferreira, L. U., Ventura, M. V. A. (2023). Phytochemical prospecting and biological activities of the floral extract from [Impatiens walleriana (Hook.)] (Balsaminaceae). Brazilian Journal of Science, 2(11), 43-50. https://doi.org/10.14295/bjs.v2i11.398
Furlani, R. P. Z., Godoy, H. T. (2008). Vitamins B1 and B2 contents in cultivated mushrooms. Food Chemistry, 106, 816-819. http://doi.org/10.1016/j.foodchem.2007.06.007
Gulcin, I. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94, 651-715. https://doi.org/10.1007/s00204-020-02689-3
Gurgel, F. E., Silva, B. D. B., Baseia, I. G. (2008). New records of Scleroderma from Northeastern Brazil. Mycotaxon, 105, 399-405.
Guzmán, G., Cortés-Pérez, A., Guzmán-Dávalos, L., Ramírez-Guillén, F., Sánchez-Jácome, M. R. (2013). An emendation of Scleroderma, new records, and review of the known species in Mexico. Revista Mexicana de Biodiversidad, 84, S173-S191. https://doi.org/10.7550/rmb.31979
Jiang, Q., Zhang, M., Mujumdar, A. S. (2020). UV induced conversion during drying of ergosterol to vitamin D in various mushrooms: Effect of different drying conditions. Trends in Food Science & Technology, 105, 200-210. https://doi.org/10.1016/j.tifs.2020.09.011
Kumar, R. V., Reddy, B. V. P., Mohan, V. (1999). Distribution of ectomycorrhizal fungi in forest tree species of Andhra Pradesh, southern India - a new record. Indian-Forester, 125(5), 496-502.
Laib, D. E., Benzara, A., Akkal, S., Bensouici, C. (2020). The anti-acetylcholinesterase, insecticidal and antifungal activities of the entophytic fungus Trichoderma sp. isolated from Ricinus communis L. against Locusta migratoria L. and Botrytis cinerea Pers.: Fr. Acta Scientifica Naturalis, 7(1), 112-125. https://doi.org/10.2478/asn-2020-0011
Li, Y., Liang, H., Zhou, D., Xing, Y., Chen, J. (2022). Phenolics, flavonoids content and antioxidant activities of Tuber indicum at different maturity stages. Chemistry & Biodiversity, 19(3), e202100830. https://doi.org/10.1002/cbdv.202100830
Łopusiewicz, Ł. (2018). Scleroderma citrinum melanin: isolation, purification, spectroscopic studies with characterization of antioxidant, antibacterial and light barrier properties. World Scientific News – An International Scientific Journal, 94(2), 115-130.
Malyskin, P. E. (1955). Stimulation of tree growth by microorganisms. In: Mycotrophy in Plants. Ed. A. A. Imshenetski. Acad. Sci. USSR, Trans Israel Program Sci. Trans., Jerusalem.
Matos Silva, S. A. N., Barros, A. B., Souza, J, M, T, Moura, A. F., Araújo, A. R., Mendes, M. G. A., Daboit, T. C., Silva, D. A., Araújo, A. J., Filho, J. D. B. M. (2020). Phytochemical and biological prospection of Mimosa genus plants extracts from Brazilian northeast. Phytochemistry Letters, 39, 173-181. https://doi.org/10.1016/j.phytol.2020.08.010
Menezes Filho, A. C. P., Ventura, M. V. A., Alves, I., Castro, C. F. S., Soares, F. A. L., Teixeira, M. B. (2023). Extratos florais do dominio Cerrado e inibição da acetilcolinesterase. Nativa, 11(2), 207-211. https://doi.org/10.31413/nativa.v11i2.14555
Menezes Filho, A. C. P., Ventura, M. V. A., Alves, I., Taques, A. S., Batista-Ventura, H. R. F., Castro, C. F. S., Teixeira, M. B., Soares, F. A. L. (2022). Phytochemical prospection, total flavonoids and total phenolics and antioxidant activity of the mushroom extract Scleroderma verrucosum (Bull.) Pers. Brazilian Journal of Science, 1(1), 1-7. https://doi.org/10.14295/bjs.v1i1.2
Mohan, V., Natarajan, K., Ingleby, K. (1993). Anatomical studies on ectomycorrhizas III. The ectomycorrhizas produced by Rhizopogon luteolus and Scleroderma citrinum on Pinus patula. Mycorrhiza, 3, 51-56.
Nouhra, E. R., Caffot, M. L. H., Pastor, N., Crespo, E. M. (2012). The species of Scleroderma from Argentina, including a new species from the Nothofagus forest. Mycologia, 104, 488-495. https://doi.org/10.3852/11-082
Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R., Malm, A. (2015). Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PloS ONE, 10(10), e0140355. https://doi.org/10.1371/journal.pone.0140355
Parlade, J., Pera, J., Alvarez, I. F. (1996). Inoculation of containerized Pseudotsuga menziesii and Pinus pinaster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza, 6, 237-245.
Phosri, C., Martín, M. P., Watling, R., Jeppson, M., Sihanonth, P. (2009). Molecular phylogeny and re-assessment of some Scleroderma spp. (Gasteromycetes). Anales del Jardín Botánico de Madrid, 66, 83-91. http://doi.org/10.3989/ajbm.2199
Ralepele, F. M., Chimuka, L., Nuapia, Y., Risenga, I. (2021). UPLC-DAD-QTOF-MS/MS analysis of targeted poly-phenolic compounds from Moringa oleifera leaves as function of seasonal responses. South African Journal of Plant, 143, 107-115. https://doi.org/10.1016/j.sajb.2021.07.032
Redrado, S., Esteban, P., Domingo, M. P., Lopez, C., Rezusta, A., Ramirez-Labrada, A., Arias, M., Pardo, J., Galvez, E. M. (2022). Integration of In Silico and In Vitro analysis of gliotoxin production reveals a narrow range of producing fungal species. Journal of Fungi, 8(4), 361. https://doi.org/10.3390/jof8040361
Saleh, M. S. M., Jalil, J., Zainalabidin, S., Asmadi, A. Y., Mustafa, N. H., Kamisah, Y. (2021). Genus Parkia: Phytochemical, medicinal uses, and pharmaceutical properties. International Journal of Molecular Sciences, 22(2), 618. https://doi.org/10.3390/ijms22020618
Sharaf, M. H., Abdelaziz, A. M., Kalaba, M. H., Radwan, A. A., Hashem, A. H. (2022). Antimicrobial, antioxidant, cytotoxic activities and phytochemical analysis of fungal endophytes isolated from Ocimum basilicum. Applied Biochemistry and Biotechnology, 194, 1271-1289. https://doi.org/10.1007/s12010-021-03702-w
Shemakhanova, N. M. (1962). Mycotrophy of woody plants, p. 329. Acad. Sci., USSR, Trans. Israel Program Sci. Trans. Jerusalem.
Skinder, B. M., Ganai, B. A., Wani, A. H. (2021). Chapter 16 – Bioprospecting of endophytic fungi for antibacterial and antifungal activities. Phytomedicine, 427-460. https://doi.org/10.1016/B978-0-12-824109-7.00025-X
Steffan, B., Steglich, W. (1984). Angewandte Chemie Internation Edition, 96, 435-437.
Steglich, W., Furtner, W. Prox, A. (1968). Naturforsch B, 23, 1044-1045.
Strzelczyk, E., Dahm, H., Pachlewski, R. (1991). B-group vitamins production by mycorrhizal fungi in response to pH (in vitro studies). Plant and Soil, 137, 237-241, 1991. https://doi.org/10.1007/BF00011202
Sufaati, S., Suharno, Agustini, V., Suwannasai, N. (2023). New records of the diversity of Scleroderma spp. from Papua, Indonesia. Biodiversitas, 24(8), 4269-4276. https://doi.org/10.13057/biodiv/d240808
Sytong, K., Sibounnavong, P., Kanokmedhakul, K., Kanokmedhakul, S. (2014). Biological active compounds of Scleroderma citrinum that inhibit plant pathogenic fungi. Journal of Agricultural Technology, 10(1), 79-86.
Tiwari, P., Bae, H. (2022). Endophytic fungi: key insights, emerging prospects, and challenges in natural products drug discovery. Microorganisms, 10(2), 360. https://doi.org/10.3390/microorganisms10020360
Toledo, A. G., Souza, J. G. L., Santana, C. B., Mallamann, A. P., Santos, C. V., Corrêa, J. M., Pinto, F. G. (2021). Antimicrobial, antioxidant activity and phytochemical prospection of Eugenia involucrata DC. leaf extracts. Brazilian Journal of Biology, 83, e245753. https://doi.org/10.1590/1519-6984.245753
Toppo, P., Jangir, P., Mehra, N., Kapoor, R., Mathur, P. (2024). Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their diverse role in agricultural and industrial sectors. Scientific Reports, 14, 588. https://doi.org/10.1038/s41598-023-51057-5
Vedenyapina, N. S. (1955). Effect of Azotobacter on growth of oak seedlings. In Mycotrophy in Plants. Ed. A. A. Im- shenetski, p. 253. Acad. Sci. USSR, Trans. Israel Program Sci. Trans Jerusalem.
Zhang, Y., Wang, D., Chen, Y., Liu, T., Zhang, S., Fan, H., Liu, H., Li, Y. (2021). Healthy function and high valued utilization of edible fungi. Food Science and Human Wellness, 10(4), 408-420. https://doi.org/10.1016/j.fshw.2021.04.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Paulo Cesar Barbosa Neto, Júlio Cesar Candido Nunes, Aurélio Ferreira Melo, Antonio Carlos Pereira de Menezes Filho, Matheus Vinícius Abadia Ventura
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.