Interaction of some chalcone derivatives with calcium channels using a theoretical model

Authors

  • Lauro Figueroa-Valverde Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México https://orcid.org/0000-0001-7119-4728
  • Marcela Rosas-Nexticapa Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0001-7119-4728
  • Magdalena Alvarez-Ramirez Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0003-0046-4342
  • Emilio Aguilar-Sanchez Faculty of Medicine, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0009-0003-9873-7253
  • Maria Virginia Mateu-Armad Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0003-3283-0001
  • Enrique Bonilla-Zavaleta Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México https://orcid.org/0000-0003-2675-628X

DOI:

https://doi.org/10.14295/bjs.v3i11.658

Keywords:

chalcone, derivatives, heart failure, nifedipine, amlodipine

Abstract

For several years, different drugs have been used to treat heart failure, such as digoxin, captopril, spironolactone, milrinone, levosimedam, dobutamine, and others. However, some of these drugs can produce secondary effects such as arrhythmia, cough, hyperkalemia, and others. Analyzing these data, this study aimed to evaluate the interaction of some chalcone derivatives (1-17) with calcium channels using theoretical models. It is important to mention that 7pjx protein, nifedipine, amlodipine, diltiazem, and verapamil were used as theoretical tools in the DockingServer program. The results showed differences in the interaction of chalcone derivatives compared with nifedipine, amlodipine, diltiazem, and verapamil drugs. Other data indicate that the inhibition constant (Ki) for chalcone analog 1 was lower compared with nifedipine, amlodipine, verapamil, and diltiazem. Besides, other results suggest that Ki for compound 11 was lower compared with nifedipine, verapamil, and diltiazem. All these data suggest that chalcone derivatives 1 and 11 could act as calcium channel inhibitors; this phenomenon could be translated into changes in blood pressure through a decrease in calcium intracellular levels. These data suggest that chalcone derivatives 1 and 11 could be good therapeutic alternatives to treat heart failure.

References

Akhtar, W., Butcher, C., Morley‐Smith, A., Riesgo-Gil, F., Dar, O., Baston, V., & Lyster, H. (2022). Oral milrinone for management of refractory right ventricular failure in patients with left ventricular assist devices. ESC Heart Failure, 9(6), 4340-4343. https://doi.org/10.1002/ehf2.14092

Alvarez-Ramirez, M., Figueroa-Valverde, L., Rosas-Nexticapa, M., Díaz-Cedillo, F., López-Ramos, M., & Hau-Heredia, L. (2024). Theoretical analysis of interaction between twenty-five cannabinoid derivatives with interleukin-6. Letters in Applied NanoBioscience. 13(3), 2024. https://doi.org/1.10 10.33263/LIANBS133.133

Annapurna, A., Mudagal, M., & Ansari, A. (2012). Cardioprotective activity of chalcones in ischemia/reperfusion-induced myocardial infarction in albino rats. Experimental & Clinical Cardiology, 17(3), 110.

Anton, C., Cox, A., Watson, R., & Ferner, R. (2003). The safety of spironolactone treatment in patients with heart failure. Journal of Clinical Pharmacy and Therapeutics, 28(4), 285-287. https://doi.org/10.1046/j.1365-2710.2003.00491.x

Arcidiacono, A., Cignoni, E., Mazzeo, P., Cupellini, L., & Mennucci, B. (2024). Predicting Solvatochromism of Chromophores in Proteins through QM/MM and Machine Learning. The Journal of Physical Chemistry A, 128(18), 3646-3658. https://doi.org/10.1021/acs.jpca.4c00249

Arif, R., Rana, M., Yasmeen, S. Khan, M. Abid, M. & Khan, M. S. (2020). Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. Journal of Molecular Structure, 1208, 127905. https://doi.org/10.1016/j.molstruc.2020.127905

Aune, D., Schlesinger, S., Norat, T., & Riboli, E. (2019). Tobacco smoking and the risk of heart failure: A systematic review and meta-analysis of prospective studies. European journal of preventive cardiology, 26(3), 279-288. https://doi.org/10.1177/2047487318806658

Bragazzi, N., Zhong, W., Shu, J., Abu-Much, A., Lotan, D., Grupper, A., & Dai, H. (2021). Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. European Journal of Preventive Cardiology, 28(15), 1682-1690. https://doi.org/10.1093/eurjpc/zwaa147

Chen, L., Tsai, M., Chern, C., Tsao, T., Lin, F., Chen, S., & Lin, C. S. (2020). A chalcone derivative, 1m‐6, exhibits atheroprotective effects by increasing cholesterol efflux and reducing inflammation‐induced endothelial dysfunction. British Journal of Pharmacology, 177(23), 5375-5392. https://doi.org/10.1111/bph.15175

Cohn, J. & Tognoni, G. (2001). A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. New England Journal of Medicine, 345(23), 1667-1675. https://doi.org/10.1056/NEJMoa010713

Di Muzio, E. Toti, D. & Polticelli, F. (2017). DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina. Journal of Computer-Aided Molecular Design, 31, 213-218.

Dix, D. Houck, K. Martin, M. Richard, A. Setzer, R. & Kavlock, R. (2007). The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicological Sciences, 95(1), 5-12. https://doi.org/10.1093/toxsci/kfl103

Du, D., Yan, J., Ren, J., Lv, H., Li, Y., Xu, S., & Yu, S. (2013). Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo. Journal of Medicinal Chemistry, 56(1), 97-108. https://doi.org/10.1021/jm301248y

Eisenberg, M., Brox, A., & Bestawros, A. (2004). Calcium channel blockers: an update. The American Journal of Medicine, 116(1), 35-43. https://doi.org/10.1016/j.amjmed.2003.08.027

Fang, Q., Wang, J., Wang, L., Zhang, Y., Yin, H., Li, Y., & Zheng, C. (2015). Attenuation of inflammatory response by a novel chalcone protects kidney and heart from hyperglycemia-induced injuries in type 1 diabetic mice. Toxicology and Applied Pharmacology, 288(2), 179-191.https://doi.org/10.1016/j.taap.2015.07.009

Figueroa-Valverde, L., Díaz-Cedillo, F., Rosas-Nexticapa, M., Alvarez-Ramirez, M., Mateu-Armad, M., & López-Ramos, M. (2023). Interaction of some amino-nitrile derivatives with vascular endothelial growth factor receptor 1 (VEGFR1) using a theoretical model. Drug Research, 73(06), 355-364.

Figueroa-Valverde, L., Marcela, R., Alvarez-Ramirez, M., Lopez-Ramos, M., Mateu-Armand, V., & Patricia, H. V. (2024). Interaction of thiophene and their derivatives with BRCA-1 using a theoretical model. Clinical Cancer Investigation Journal, 13(2-2024), 40-44. https://doi.org/10.51847/4AnibsrLIW

Follmann, M., Ackerstaff, J., Redlich, G., Wunder, F., Lang, D., Kern, A., & Stasch, J. P. (2017). Discovery of the soluble guanylate cyclase stimulator vericiguat (BAY 1021189) for the treatment of chronic heart failure. Journal of Medicinal Chemistry, 60(12), 5146-5161.https://doi.org/10.1021/acs.jmedchem.7b00449

Granberg, K., Sakamaki, S., Larsson, N., Bergström, F., Fuchigami, R., Niwa, Y., & Lal, M. (2024). Discovery of clinical candidate AZD5462, a selective oral allosteric RXFP1 agonist for treatment of heart failure. Journal of Medicinal Chemistry, 67(6), 4419-4441. https://doi.org/10.1021/acs.jmedchem.3c02184

Guglin, M., Lynch, K., & Krischer, J. (2014). Heart failure as a risk factor for diabetes mellitus. Cardiology, 129(2), 84-92. https://doi.org/10.1159/000363282

Hernández, R., Genio, F., Casanova, J., Conato, M., & Paderes, M. (2024). Antiproliferative activities and SwissADME predictions of physicochemical properties of carbonyl group‐modified rotenone analogues. ChemistryOpen, 13(1), e202300087. https://doi.org/10.1002/open.202300087

Homans, S. (2007). Dynamics and thermodynamics of ligand–protein interactions. Bioactive Conformation I. 51-82.

Huang, C., Kohan, S., Liu, I., Lee, J., Baghdasaryan, N., Park, J., & Lee, M. (2024). Association between coronary artery disease testing in patients with new-onset heart failure and heart failure readmission and mortality. Journal of General Internal Medicine, 39(5), 747-755.

Huang, C., Park, J., Liu, I., Lee, J., Kohan, S., Mefford, M., & Lee, M. S. (2024). Effectiveness and safety of early treatment with spironolactone for new‐onset acute heart failure. Journal of Hospital Medicine, 19(4), 267-277. https://doi.org/10.1002/jhm.13317

Ishaku, S., Bakare-Odunola, M., Musa, A., Yakasai, I., Garba, M., & Adzu, B. (2020). Effect of dihydro-artemisinin on the pharmacokinetics of gliclazide in diabetic subjects. International Journal of Biological and Chemical Sciences, 14(6), 2267-2276. https://doi.org/10.33263/BRIAC133.266

Judson, R., Richard, A., Dix, D., Houck, K., Martin, M., Kavlock, R., & Smith, E. (2009). The toxicity data landscape for environmental chemicals. Environmental Health Perspectives, 117(5), 685-695. https://doi.org/10.1289/ehp.0800168

Kamimura, D., Cain, L., Mentz, R., White, W., Blaha, M., DeFilippis, A., & Hall, M. E. (2018). Cigarette smoking and incident heart failure: insights from the Jackson Heart Study. Circulation, 137(24), 2572-2582. https://doi.org/10.1161/CIRCULATIONAHA.117.031912

Katsiki, N., Doumas, M., & Mikhailidis, D. (2016). Lipids, statins and heart failure: an update. Current Pharmaceutical Design, 22(31), 4796-4806.

Khan, M., Shahid, I., Bennis, A., Rakisheva, A., Metra, M., & Butler, J. (2024). Global epidemiology of heart failure. Nature Reviews Cardiology, 1-18.

Lala, A., & Desai, A. S. (2014). The role of coronary artery disease in heart failure. Heart Failure Clinics, 10(2), 353-365. https://doi.org/10.1016/j.hfc.2013.10.002

Lee, C., Lee, H. Yoon, M. Chun, K. Kong, M. Jung, M. & Kang, S. (2024). Heart failure statistics 2024 update: A report from the Korean society of heart failure. International Journal of Heart Failure, 6(2), 56. https://doi.org/10.36628%2Fijhf.2024.0010

Levitt, D. (2002). PKQuest: a general physiologically based pharmacokinetic model. Introduction and application to propranolol. BMC Clinical Pharmacology, 2(1), 1-21.

Li, J. Li, D., Xu, Y., Guo, Z., Liu, X., Yang, H., & Wang, L. (2017). Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 27(3), 602-606. https://doi.org/10.1016/j.bmcl.2016.12.008

Lohachova, K., Sviatenko, A., Kyrychenko, A., Ivanov, V., Langer, T., Kovalenko, S., & Kalugin, O. (2024). Computer-aided drug design of novel nirmatrelvir analogs inhibiting main protease of Coronavirus SARS-CoV-2. Journal of Applied Pharmaceutical Science, 14(5), 232-239. https://doi.org/10.1080/07391102.2023.2192798

Madani, A., Benkortbi, O., & Laidi, M. (2024). In silico prediction of the inhibition of new molecules on SARS-CoV-2 3CL protease by using QSAR: PSOSVR approach. Brazilian Journal of Chemical Engineering, 41(1), 427-442.

Maggioni, A., Latini, R., Carson, P., Singh, S., Barlera, S., Glazer, R., & Val-HeFT Investigators. (2005). Valsartan reduces the incidence of atrial fibrillation in patients with heart failure: results from the Valsartan Heart Failure Trial (Val-HeFT). American Heart Journal, 149(3), 548-557.

Martin, S., Aday, A., Almarzooq, Z., Anderson, C., Arora, P., & Avery, C. (2024). 2024 heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circulation, 149(8), e347-e913. https://doi.org/10.1161/CIR.0000000000001209

Masarone, D., Kittleson, M., Pollesello, P., Marini, M., Iacoviello, M., Oliva, F., & Pacileo, G. (2022). Use of levosimendan in patients with advanced heart failure: an update. Journal of Clinical Medicine, 11(21), 6408. https://www.mdpi.com/2077-0383/11/21/6408#

Mazimba, S., Jeukeng, C., Ondigi, O., Mwansa, H., Johnson, A., Elumogo, C., & Bilchick, K. (2023). Coronary perfusion pressure is associated with adverse outcomes in advanced heart failure. Perfusion, 38(7), 1492-1500.

Meng, W., Pi, Z., Brigance, R., Rossi, K., Schumacher, W., Bostwick, J., & Finlay, H. J. (2021). Identification of a hydroxypyrimidinone compound (21) as a potent APJ receptor agonist for the potential treatment of heart failure. Journal of Medicinal Chemistry, 64(24), 18102-18113. https://doi.org/10.1021/acs.jmedchem.1c01504

Nielsen, R., Pryds, K., Olesen, K., Mortensen, M., Gyldenkerne, C., Nielsen, J., & Maeng, M. (2024). Coronary artery disease is a stronger predictor of all‐cause mortality than left ventricular ejection fraction among patients with newly diagnosed heart failure: Insights from the WDHR. Journal of the American Heart Association, 13(14), e9771. https://doi.org/10.1161/JAHA.123.033938

Ohkuma, T., Komorita, Y., Peters, S., & Woodward, M. (2019). Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia, 62, 1550-1560.

Oliva, F., Comin-Colet, J., Fedele, F., Fruhwald, F., Gustafsson, F., Kivikko, M., & Tschöpe, C. (2018). Repetitive levosimendan treatment in the management of advanced heart failure. European Heart Journal Supplements, 20(suppl_I), I11-I20. https://doi.org/10.1093/eurheartj/suy040

Packer, M., Carver, J., Rodeheffer, R., Ivanhoe, R., DiBianco, R., & Zeldis, S. Promise Study Research Group*. (1991). Effect of oral milrinone on mortality in severe chronic heart failure. New England Journal of Medicine, 325(21), 1468-1475. https://doi.org/10.1056/NEJM19911121325210

Packer, M., Lee, W., Yushak, M., & Medina, N. (1986). Comparison of captopril and enalapril in patients with severe chronic heart failure. New England Journal of Medicine, 315(14), 847-853.

Perozzo, R., Folkers, G., & Scapozza, L. (2004). Thermodynamics of protein–ligand interactions: history, presence, and future aspects. Journal of Receptors and Signal Transduction, 24(1-2), 1-52. https://doi.org/10.1081/RRS-120037896

Plewczynski, D., Philips, A., Grotthuss, M., Rychlewski, L., & Ginalski, K. (2014). HarmonyDOCK: the structural analysis of poses in protein-ligand docking. Journal of Computational Biology, 21(3), 247-256. https://doi.org/10.1089/cmb.2009.0111

Richter, J., Gunaga, P., Yadav, N., Bora, R., Bhide, R., Rajugowda, N., & Priestley, E. S. (2024). Discovery of BMS-986308: A renal outer medullary potassium channel inhibitor for the treatment of heart failure. Journal of Medicinal Chemistry, 67(11), 9731-9744. https://doi.org/10.1021/acs.jmedchem.4c00893

Riniker, S., Christ, C., Hansen, H., Hünenberger, P., Oostenbrink, C., Steiner, D., & van Gunsteren, W. (2011). Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software. The Journal of Physical Chemistry B, 115(46), 13570-13577. https://doi.org/10.1021/jp204303a

Riswanto, F., Rawa, M., Murugaiyah, V., Salin, N., Istyastono, E., Hariono, M., & Wahab, H. A. (2021). Anti-cholinesterase activity of chalcone derivatives: synthesis, in vitro assay and molecular docking study. Medicinal Chemistry, 17(5), 442-452. https://doi.org/10.2174/1573406415666191206095032

Romankiewicz, J., Brogden, R., Heel, R., Speight, T., & Avery, G. (1983). Captopril: an update review of its pharmacological properties and therapeutic efficacy in congestive heart failure. Drugs, 25, 6-40.

Seidel, T., Bryant, S., Ibis, G., Poli, G., & Langer, T. (2017). 3D Pharmacophore modeling techniques in computer‐aided molecular design using ligandscout. Tutorials in Chemoinformatics, 279-309. https://doi.org/10.1002/9781119161110.ch20

Sicak, Y. (2021). Design and antiproliferative and antioxidant activities of furan-based thiosemicarbazides and 1, 2, 4-triazoles: their structure-activity relationship and SwissADME predictions. Medicinal Chemistry Research, 30(8), 1557-156

Slivnick, J., & Lampert, B. (2019). Hypertension and heart failure. Heart Failure Clinics, 15(4), 531-541. https://doi.org/10.1016/j.hfc.2019.06.007

Toropov, A. Toropova, A. Raska, I. Leszczynska, D. & Leszczynski, J. (2014). Comprehension of drug toxicity: software and databases. Computers in biology and medicine, 45, 20-25. https://doi.org/10.1016/j.compbiomed.2013.11.013

Trosset, J., & Scheraga, H. (1999). PRODOCK: software package for protein modeling and docking. Journal of Computational Chemistry, 20(4), 412-427. https://doi.org/10.1002/(SICI)1096-987X(199903)20:4%3C412: AID-JCC3%3E3.0.CO;2-N

Vasan, R., & Levy, D. (1996). The role of hypertension in the pathogenesis of heart failure: a clinical mechanistic overview. Archives of Internal Medicine, 156(16), 1789-1796. https://doi.org/10.1001/archinte.1996.00440150033003

Velagaleti, R., Massaro, J., Vasan, R., Robins, S., Kannel, W., & Levy, D. (2009). Relations of lipid concentrations to heart failure incidence: the Framingham Heart Study. Circulation, 120(23), 2345-2351. https://doi.org/10.1161/CIRCULATIONAHA.109.830984

Wang, J., Hussain, S., Maddu, N., & Li, H. (2024). Protective effects of trans-chalcone on myocardial ischemia and reperfusion challenge through targeting phosphoinositide 3-kinase/Akt-inflammosome interaction. Journal of Physiological Investigation, 67(3), 129-138. https://doi.org/10.4103/ejpi.EJPI-D-24-00006

Wilhelmsen, L., Rosengren, A., Eriksson, H., & Lappas, G. (2001). Heart failure in the general population of men–morbidity, risk factors and prognosis. Journal of Internal Medicine, 249(3), 253-261. https://doi.org/10.1111/j.1365-2796.2001.00801.x

Yogeswaran, V., Hidano, D., Diaz, A., Van-Spall, H., Mamas, M., Roth, G., & Cheng, R. (2024). Regional variations in heart failure: a global perspective. Heart, 110(1), 11-18. https://doi.org/10.1136/heartjnl-2022-321295

Downloads

Published

2024-10-10

How to Cite

Figueroa-Valverde, L., Rosas-Nexticapa, M., Alvarez-Ramirez , M., Aguilar-Sanchez, E., Mateu-Armad, M. V., & Bonilla-Zavaleta, E. (2024). Interaction of some chalcone derivatives with calcium channels using a theoretical model. Brazilian Journal of Science, 3(11), 1–15. https://doi.org/10.14295/bjs.v3i11.658

Issue

Section

Agrarian and Biological Sciences