Interaction of dihydrofuran-2-one and its derivatives with either MAO-B or COMT enzymes using a theoretical model

Authors

  • Lauro Figueroa-Valverde Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México https://orcid.org/0000-0001-8056-9069
  • Marcela Rosas-Nexticapa Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0001-7119-4728
  • Magdalena Alvarez-Ramirez Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0003-0046-4342
  • Emilio Aguilar-Sanchez Facultad de Medicina, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0009-0003-9873-7253
  • Maria Virginia Mateu-Armad Faculty of Nutrition, University Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México https://orcid.org/0000-0003-3283-0001

DOI:

https://doi.org/10.14295/bjs.v3i10.634

Keywords:

Parkinson´s, MAO-B, COMT, dihydrofuran-2-one, derivative, tolcapone

Abstract

There are several drugs for treating Parkinson's such as L-Dopa, carbidopa, benserazide, entacapone, bromocriptine, safinamide, rasagiline, and others. However, some of these drugs can produce some secondary effects such as hypotension, insomnia, dizziness, nausea, and constipation. In the search for a new therapeutic alternative for treating Parkinson´s, this study aimed to evaluate the theoretical interaction of Dehydrofuran-2-one (1) and their derivatives (2-31) with both MAO-B and COMT enzymes. To evaluate the interaction of Dehydrofuran-2-one (1) and their derivatives (2-31) with both MAO-B and COMT enzymes, the 1gos and 1vid proteins as theoretical tools. Besides, some drugs, such as selegiline, rasagiline, safinamide, entacapone, and tolcapone, were used as controls in the DockingServer program. The results showed differences in the interaction of compounds 1-31 with either 1gos or 1vid proteins surface compared to the controls. Other data showed that inhibition constants (Ki) for 2, 3, 12, and 26 were lower compared to selegeline, rosagiline, and sofinamide, respectively. In addition, the Ki for 1-3, 7, 9, 10, 13, 21, and 25 were lower than entacapone and tolcapone. These data suggest that 1-3, 12, and 26 could act as MAO-B inhibitors and compounds 1-3, 7, 9, 10, 13, 21, and 26 as COMT antagonists. In conclusion, these compounds may be a good therapeutic alternative for treating Parkinson´s disease.

References

Abdel-Magid, A. (2019). LRRK2 kinase inhibitors as possible therapy for Parkinson’s disease and other neurodegenerative disorders. ACS Medicinal Chemistry Letters Journal, 10(6), 846-847. https://doi.org/10.1021/acsmedchemlett.9b00216

Alexander, G. (2004). Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in Clinical Neuroscience, 6(3), 259-280. https://doi.org/10.31887/DCNS.2004.6.3/galexander

Bakchi, B., Krishna, A., Sreecharan, E., Ganesh, V., Niharika, M., & Maharshi, S. (2022). An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist's perspective. Journal of Molecular Structure, 1259, 132712. https://doi.org/10.1016/j.molstruc.2022.132712

Baskaran, K., Arumugam, A., Kandasamy, R., & Alagarsamy, S. (2020). In silico method for prediction of maximum binding affinity and ligand-protein interaction studies on Alzheimer’s disease. International Journal of Research - GRANTHAALAYAH, 8, 362-370. https://doi.org/10.29121/granthaalayah.v8.i11.2020.2472

Basu, S., Barawkar, D., Ramdas, V., Naykodi, M., Shejul, Y., & Patel, M. (2017). Discovery of potent and selective A2A antagonists with efficacy in animal models of Parkinson’s disease and depression. ACS Medicinal Chemistry Letters Journal, 8(8), 835-840. https://doi.org/10.1021/acsmedchemlett.7b00175

Billingsley, K., Bandres-Ciga, S., Saez-Atienzar, S., & Singleton, A. (2018). Genetic risk factors in Parkinson’s disease. Cell and Tissue Research, 373, 9-20.

Blesa, J., Foffani, G., Dehay, B., Bezard, E., & Obeso J. (2022). Motor and non-motor circuit disturbances in early

Parkinson disease: which happens first?. Nature Reviews Neuroscience, 23(2),115-28.

Borchardt, R. (1973). Catechol O-methyltransferase. 2. In vitro inhibition by substituted 8-hydroxyquinolines. Journal of Medicinal Chemistry, 16(4), 382-387. https://doi.org/10.1021/jm00262a016

Burkhard, P., Dominici, P., Borri-Voltattorni, C., Jansonius, J., & Malashkevich, V. (2001) Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase. Nature Structural & Molecular Biology, 8(11), 963-967. https://doi.org/10.1038/nsb1101-963

Butina, D., Segall, M., & Frankcombe, K. (2002). Predicting ADME properties in silico: methods and models. Drug Discovery Today, 7(11), 83-88. https://doi.org/10.1016/S1359-6446(02)02288-2

Carotti, A., Carrieri, A., Chimichi, S., Boccalini, M., Cosimelli, B., & Gnerre, C. (2002). Natural and synthetic geiparvarins are strong and selective MAO-B inhibitors. Synthesis and SAR studies. Bioorganic & Medicinal Chemistry Letters, 12(24), 3551-3555. https://doi.org/10.1016/S0960-894X(02)00798-9

Choi, H. L., Ahn, J. H., Chang, W. H., Jung, W., Youn, J., & Shin, D. W. (2023). Risk of Parkinson’s Disease in Stroke Survivors: A nationwide cohort study in South Korea. MedRxiv, 2023-2026. https://doi.org/10.1101/2023.06.02.23290911

Churchyard, A., Mathias, C., Boonkongchuen, P., & Lees, A. (1997). Autonomic effects of selegiline: possible cardiovascular toxicity in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 63(2), 228-234. https://doi.org/10.1136/jnnp.63.2.228

Dezsi, L., & Vecsei, L. (2017). Monoamine oxidase B inhibitors in Parkinson's disease. Current Drugs Targets- CNS & Neurological Disorders, 16(4), 425-439. https://doi.org/10.2174/1871527316666170124165222

Dowell, F., & Lee, J. (1970). Levodopa, Parkinson's disease, and hypotension. Annals of Internal Medicine, 72(5), 751-2.

Dulski, J., Uitti, J., Ross, O., & Wszolek, Z. (2022). Genetic architecture of Parkinson’s disease subtypes-Review of the literature. Frontiers in Aging Neuroscience, 14, 1023574. https://doi.org/10.3389/fnagi.2022.1023574

Edmondson, D., & Binda, C. (2018). Monoamine oxidases. Membrane protein complexes. Structure and function, 117-39.

Ernst, G., Akuma, D., Au, V., Buchler, I., Byers, S., Carr, G., & Barrow, J. (2019). Synthesis and evaluation of bicyclic hydroxypyridones as inhibitors of catechol O-methyltransferase. ACS Medicinal Chemistry Letters Journal, 10(11), 1573-8. https://doi.org/10.1021/acsmedchemlett.9b00345

Fabbri, M., Ferreira, & J., Rascol, O. (2022). COMT Inhibitors in the Management of Parkinson’s Disease. CNS Drugs, 36(3), 261-82.

Fabbri, M., Ferreira, J., & Rascol, O. (2022). COMT Inhibitors in the Management of Parkinson’s Disease. CNS Drugs, 36(3), 261-82.

Fahn, S. (2018). The history of dopamine and levodopa in the treatment of Parkinson's disease. Movement disorders: Official Journal of the Movement Disorder Society, 23(3), 497-508. https://doi.org/10.1002/mds. 22028

Figueroa-Valverde, L., Diaz-Cedillo, F., Nexticapa, M., Alvarez-Ramirez, M., López-Ramos, M., & Melgarejo-Guttierrez, M. (2024). Biochemical interaction of twenty steroid derivatives with ribosomal protein kinase 4 S6 (RSK-4) surface using a theoretical model. Brazilian Journal of Science, 3(2), 66-81. https://doi.org/10.14295/bjs.v3i2.482

Gianutsos, G., Chute, S., & Dunn, J. (1995). Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. European Journal of Pharmacology, 110(3), 357-61. https://doi.org/10.1016/0014-2999(85)90564-3

Halgren, T. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5‐6), 490-519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

Harrison, S., Poslusney, M., Mulhearn, J., Zhao, Z., Kett, N., & Schubert, J. (2015). Synthesis and evaluation of heterocyclic catechol mimics as inhibitors of catechol-O-methyltransferase (COMT). ACS Medicinal Chemistry Letters Journal, 6(3), 318-323. https://doi.org/10.1021/ml500502d

Kaltenboeck, A., Halahakoon, D., Harmer, C., Cowen, P., & Browning, M. (2022). Enhanced taste recognition following subacute treatment with the dopamine D2/D3 receptor agonist pramipexole in healthy volunteers. International Journal of Neuropsychopharmacology, 25(9), 720-726. https://doi.org/10.1093/ijnp/pyac030

Kang, M., An, J., Li, H., Zhuang, W., Heo, R., Park, S., & Park, W. (2022). Blockade of voltage-dependent K+ channels by benztropine, a muscarinic acetylcholine receptor inhibitor, in coronary arterial smooth muscle cells. Toxicological Sciences, 189(2), 260-267. https://doi.org/10.1093/toxsci/kfac083

Kasdagli, M., Katsouyanni, K., Dimakopoulou, K., & Samoli, E. (2019). Air pollution and Parkinson's disease: a systematic review and meta-analysis up to 2018. International Journal of Hygiene and Environmental Health, 222(3), 402-409. https://doi.org/10.1016/j.ijheh.2018.12.006

Khrapova, M., Khrapov, S., Chechushkov, A., Kozhin, P., Romakh, L., & Serykh, A. (2023). The toxicity of a new monophenolic synthetic inducer of keap1/Nrf2/ARE redox-sensitive signaling system in vitro and in vivo. Cell and Tissue Biology, 17(3), 299-305. https://doi.org/10.1134/S1990519X23030069

Kiss, I., Ferreira, H., Torrão, L., Bonifácio, M., Palma, P., & Soares, P. (2010). Discovery of a long-acting, peripherally selective inhibitor of Catechol-O-methyltransferase. Journal of Medicinal Chemistry, 53(8), 3396-3411. https://doi.org/10.1021/jm1001524

Learmonth, D., Palma, P., Vieira-Coelho, M., & Soares, P. (2004). Synthesis, biological evaluation, and molecular modeling studies of a novel, peripherally selective inhibitor of Catechol-O-methyltransferase. Journal of Medicinal Chemistry, 47(25), 6207-6217. https://doi.org/10.1021/jm040848o

Lee, D. (1993). MAO Inhibitors in Parkinson's disease. Journal of the Korean Neurological Association, 11(1), 1-7. 10.5607/en.2011.20.1.1

Lohmann, S., Grigoletto, J., Bernis, M., Pesch, V., Ma, L., & Reithofer, S. (2022). Ischemic stroke causes Parkinson’s disease-like pathology and symptoms in transgenic mice overexpressing alpha-synuclein. Acta Neuropathologica Communications, 10(1), 1-17.

Lopez-Ramos, M., Figueroa-Valverde, L., Rosas-Nexicapa, M., Cervantes-Ortega, C., Alvarez-Ramirez, M., & Diaz-Cedillo, F. (2024). Interaction of benzenesulfonamide derivatives with Smyd3 using a theoretical model. Brazilian Journal of Science, 3(1), 115-129. https://doi.org/10.14295/bjs.v3i1.455

Marconi, R., Bonnet, A., Vidailhet, M., & Agid, Y. (1992). The IMAO-B MDL 72.974 A in Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 55(11), 1096. https://doi.org/10.1136/jnnp.55.11.1096-a

Martin, M., Dix, D., Judson, R., Kavlock, R., Reif, D., & Richard, A. (2010). Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA’s ToxCast program. Chemical Research in Toxicology Journal, 23(3), 578-590. https://doi.org/10.1021/tx900325g

Montioli, R., Voltattorni, S., & Bertoldi, M. (2016). Parkinson’s disease: recent updates in the identification of human dopa decarboxylase inhibitors. Current Drug Metabolism, 17(5), 513-518.

Morris, G., Huey, R., & Olson, A. (2008). Using autodock for ligand‐receptor docking. Current Protocols in Bioinformatics, 24(1), 8-14. https://doi.org/10.1002/0471250953.bi0814s24

Murata, H., Barnhill, L., & Bronstein, J. (2022). Air pollution and the risk of Parkinson's disease: a review. Movement Disorders, 37(5), 894-904. https://doi.org/10.1002/mds.28922

Niswender, C., Johnson, K., Weaver, C., Jones, C., Xiang, Z., & Luo, Q. (2008). Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Molecular Pharmacology, 74(5), 1345-1358. https://doi.org/10.1124/mol.108.049551

Olanow C. (2000). Tolcapone and hepatotoxic effects. Archives of Neurology, 57(2), 263-267. https://doi.org/10.1002/ 0471250953.bi0814s24

Pagano, G., Ferrara, N., Brooks, D., & Pavese, N. (2016). Age at onset and Parkinson disease phenotype. Neurology, 86(15), 1400-1407. https://doi.org/10.1212/WNL.00000000000024

Palacios, N. (2017). Air pollution and Parkinson’s disease-evidence and future directions. Reviews on Environmental Health, 32(4), 303-313. https://doi.org/10.1515/reveh-2017-0009

Panarese, J., Engers, D., Wu, Y., Bronson, J., Macor, J., Chun, A., & Lindsley, C. (2018). Discovery of VU2957 (Valiglurax): An mGlu4 positive allosteric modulator evaluated as a preclinical candidate for the treatment of Parkinson’s disease. ACS Medicinal Chemistry Letters Journal, 10(3), 255-260.

Park, H., Kim, J., Kim, T., Jo, S., Yeom, M., Moon, B., & Choo, H. (2013). Oxazolopyridines and thiazolopyridines as monoamine oxidase B inhibitors for the treatment of Parkinson’s diseas. Bioorganic & Medicinal Chemistry, 21(17), 5480-5487. https://doi.org/10.1016/j.bmc.2013.05.066

Patel, Y., Gillet, V., Bravi, G., & Leach, A. (2002). A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. Journal of Computer-Aided Molecular Design, 16, 653-681.

Peeters, M., Maloteaux, J., & Hermans, E. (2003). Distinct effects of amantadine and memantine on dopaminergic transmission in the rat striatum. Neuroscience Letters, 343(3), 205-209. https://doi.org/10.1016/S0304-3940(03)00398-7

Pérez, S., La-Farré, M., Garcıá, M., & Barceló, D. (2001). Occurrence of polycyclic aromatic hydrocarbons in sewage sludge and their contribution to its toxicity in the ToxAlert® 100 bioassay. Chemosphere, 45(6-7), 705-712. https://doi.org/10.1016/S0045-6535(01)00152-7

Raeisi, S. (2013). Molecular docking approach of monoamine oxidase B inhibitors for identifying new potential drugs: Insights into drug-protein interaction discovery. Journal of Cell and Molecular Research, 5(1), 24-33.

Sashidhara, K., Modukuri, R., Jadiya, P., Rao, K., Sharma, T., & Haque, R. (2014). Discovery of 3-Arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against Parkinson’s disease. ACS Medicinal Chemistry Letters Journal, 5(10), 1099-1103. https://doi.org/10.1021/ml500222g

Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B. & Agid, Y. (1983). Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Research, 275(2), 321-328.

Shen, Z., & Kong, D. (2018). Meta-analysis of the adverse events associated with extended-release versus standard immediate-release pramipexole in Parkinson disease. Medicine, 97(34), e11316. https://doi.org/10.1097/MD.0000000000011316

Shinde, V., Hoelting, L., Srinivasan, S., Meisig, J., Meganathan, K., & Jagtap, S. (2017). Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Tox ukn and STOP-Tox ukk tests. Archives of Toxicology, 91, 839-864.

Song, L., Zhang, S., Li, H., Hansson, O., Sonestedt, E., & Borné, Y. (2022). Comparison of risk factors for Parkinson’s disease, coronary events and ischemic stroke. npj Parkinson's Disease, 8(1), 107.

Visha, K., Singla, C., Sharma, A., & Dhiman, A. (2020). Prediction of Environmental Toxicity of Active Chemical Constituents of Ipomoea Carnea through GUSAR Software. Turkish Journal of Mathematics Education, 11(2), 735-740. https://doi.org/10.17762/turcomat.v11i2.9768

Wang, H., Mulgaonkar, N., Pérez, L., & Fernando, S. (2022). ELIXIR-A: An Interactive Visualization Tool for Multi-Target Pharmacophore Refinement. ACS Omega, 7(15), 12707-12715. https://doi.org/10.1021/acsomega.1c07144

Wang, Y., Deng, W., Lee, D., Yan, L., Lu, Y., Dong, S., & Jiang, W. (2024). Age-associated disparity in phagocytic clearance affects the efficacy of cancer nanotherapeutics. Nature Nanotechnology, 19(2), 255-263.

Wang, Z., Yi, C., Chen, K., Wang, T., Deng, K., & Jin, C. (2022). Enhancing monoamine oxidase B inhibitory activity via chiral fluorination: Structure-activity relationship, biological evaluation, and molecular docking study. European Journal of Medicinal Chemistry, 228, 114025. https://doi.org/10.1016/j.ejmech.2021.114025

Willis, A., Roberts, E., Beck, J., Fiske, B., Ross, W., & Savica R. (2022). Incidence of Parkinson disease in North America. Npj Parkinson's Disease, 8(1), 1-7. https://doi.org/10.1038/s41531-022-00410-y

Wolbe, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160-169. https://doi.org/10.1016/S0960-894X(02)00798-9

Downloads

Published

2024-08-01

How to Cite

Figueroa-Valverde, L., Rosas-Nexticapa, M., Alvarez-Ramirez, M., Aguilar-Sanchez, E., & Mateu-Armad, M. V. (2024). Interaction of dihydrofuran-2-one and its derivatives with either MAO-B or COMT enzymes using a theoretical model. Brazilian Journal of Science, 3(10), 28–44. https://doi.org/10.14295/bjs.v3i10.634