Phytochemistry and antifungal activity of floral ethanolic extract of Schultesia aptera Cham. (Gentianaceae f.)




Schultesia genus, Colletotrichum acutatum, Colletotrichum gloeosporioides, tannins


Schultesia aptera is a plant species belonging to the Gentianaceae family found in Cerrado areas of Brazil. S. aptera presents a low number of studies, mainly phytochemical. This study aimed to evaluate the qualitative phytochemical profile and antifungal activity of agricultural interest of the floral ethanolic extract of S. aptera. Flowers were collected in April 2024. The ethanolic extract was obtained by maceration and then freeze-drying. The antifungal assays were carried out at different concentrations (25, 50, 100, 200 and 300 µL mL-1) on the fungal strains of Sclerotinia sclerotiorum, Colletotrichum acutatum, Colletotrichum gloeosporioides and Rhizopus stolonifer. Phytochemical prospecting demonstrated the presence of 10 groups of pharmaceutical, biotechnological and agricultural interest that have antifungal activities. The floral extract of S. aptera demonstrated effectiveness between the highest concentrations 100-300 µL mL-1 with inhibition rates between 33-71 for C. acutatum and between 31-67% for C. gloeosporioides. S. sclerotiorum and R. stolonifer strains were resistant to all concentrations. The floral ethanolic extract of Schultesia aptera demonstrated to be an antifungal agent on the genus Colletotrichum and can be used to control and inhibit Colletotrichum acutatum and Colletotrichum gloeosporioides.


Agidew, M. G. (2022). Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bulletin of the National Research Centre, 46, 87. DOI:

Balamurugan, V., Sheerin Fatima, M. A., Velurajan, S. (2019). A guide to phytochemical analysis. International Journal of Advance Research and Innovative Ideas in Education, 5(1), 236-245.

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C-M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus regiliosa. Molecules, 27, 1326. DOI:

Bautista-Baños, S., Velaquez-Del Valle, M. G., Hernandez-Lauzardoa, A. N., & Barka, E. A. (2008). The Rhizopus Stolonifer-Tomato Interaction. Plant-Microbe Interactions, 269-289.

Bautista-Baños, S., Bosquez-Molina, E., & Barrera-Necha, L. L. (2014). Rhizopus stolonifer (soft rot). In: Bautista-Baños, S. (Ed.), Postharvest Decay, Chapter 1, 1-44 p. DOI:

Banu, K. S., & Cathrine, L. (2015). General techniques involved in phytochemical analysis. International Journal of Advanced Research in Chemical Science, 2(4), 25-32.

Bhalla, N., Ingle, N., Patri, S. V., & Haranath, D. (2021). Phytochemical analysis of Moringa oleidera leaves extracts by GC-MS and free radical scavenging potency for industrial applications. Saudi Journal of Biological Sciences, 28, 6915-6928. DOI:

Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93-108. DOI:

Boroushaki, M. T., Mollazadeh, H., & Afshari, A. R. (2016). Pomegranate seed oil: a comprehensive review on its therapeutic efects. International Journal of Pharmaceutical Sciences and Research, 7(2), 1000-10013.

Cunha, W. G., Tinoco, M. L. P., Pancoti, H. L., Ribeiro, R. E., & Aragão, F. J. L. (2010). High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathology, 59, 654-660. DOI:

Chi, X., Zhang, F., Gao, Q., Xing, R., & Chen, S. (2021). A review on the ethnomedicinal usage, phytochemistry, and pharmacological properties of Gentianeae (Gentianaceae) in Tibetan medicine. Plants, 10(11), 2383. DOI:

Derong, L., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., & Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type diabetes. Molecules, 21(10), 137. DOI:

Dowling, M., Peres, N., Villani, S., & Schnabel, G. (2020). Managing Colletotrichum on fruit crops: A “Complex” challenge. Plant Disease, 104, 2301-2316. DOI:

Francis, G., Zohar, K., Harinder, P. S., & Klaus, B. (2002). The biological action of saponins in animal systems. British Journal of Nutrition, 88(6), 587-605. DOI:

Gentian Research Network. (2012). Newest classification of Gentianaceae. Gentian Research Network Website. [Online.] Available in: Access in 24 May 2024.

Guimarães, E. F. (2002). Schultesia Mart. (Gentianaceae) - revisão taxonômica. Tese de Doutorado pelo Departamento de Botânica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.

Guimarães, E. F., Mendonça, C. B. F., Gonçalves-Esteves, V., & Pereira, J. F. (2003). Palinotaxônomia de espécies de Schultesia Mart. - Gentianaceae Juss. Arquivos do Museu Nacional do Rio de Janeiro, 61(3), 151-164.

Guimarães, E. F., Dalvi, V. C., & Azevedo, A. A. (2013). Morphoanatomy of Schultesia pachyphylla (Gentianaceae): a discordant pattern in the genus. Botany, 91(12). DOI:

Haralampidis, K., Trojanowska, M., & Osbourn, A. E. (2002). Biosynthesis of triterpenoid saponins in plants. Advances in Biochemical Engineering/Biotechnology, 75, 31-49. DOI:

Liu, Q., Chen, Q., Liu, H., Du, Y., Jiao, W., Sun, F., & Fu, M. (2024). Rhizopus stolonifer and related control strategies in postharvest fruit: A review. Heliyon, 10, e29522. DOI:

Khan, M. R., Chonhemchob, V., Huang, C., & Suwanamornlert, P. (2021). Antifungal activity of propyl disulfide from neem (Azadirachta indica) in vapor and agar diffusion assays against anthracnose pathogens (Colletotrichum gloeosporioides and Colletotrichum acutatum) in mango fruit. Microorganisms, 9(4), 1-13. DOI:

Mahomoodally, M. F., Gurib-Fakim, A., & Subratty, A. H. (2005). Antimicrobial activities and phytochemical profles of endemic medicinal plants of Mauritius. Pharmaceutical Biology, 43(3), 237-242. DOI:

McCaghey, M., Willbur, J., Ranjan, A., Grau, C. R., Chapman, S., Diers, B., Groves, C., Kabbage, M., & Smith, D. L. (2017). Development and evaluation of Glycina max germplasm lines with quantitative resistance to Sclerotinia sclerotiorum. Frontiers in Plant Science, 8, 1495. DOI:

Melo, P. A. F. R., Alves, E. U., Martins, C. C., Anjos Neto, A. P., Pinto, K. M. S., Araújo, L. R., Vieira, C. P., & Nascimento, L. C. (2016). Extracts of Caesalpinia ferrea and Trichoderma sp. on the control of Colletotrichum sp. transmission in Sideroxylon obtusifolium seeds. Revista Brasileira de Plantas Medicinais, 18(2), 494-501. DOI:

Menezes Filho, A. C. P. (2021). O extrato floral de Jacaranda ulei Bureau & K. Schum. inibe Candida? Scientific Electronic Archives, 14(8), 63-68. DOI:

Menezes Filho, A. C. P., Porfiro, C. A., & Castro, C. F. S. (2021a). Avaliação do extrato floral de Fridericia platyphylla (Cham.) L. G. Lohmann sobre Candida krusei, C. tropicalis, C. guilliermondii e C. albicans. Scientific Electronic Archives, 13(7), 53-58. DOI:

Menezes Filho, A. C. P., Castro, C. F. S., Silva, A. P., & Cruz, R. M. (2021b). Avaliação físico-química, fitoquímica e atividades biológicas do extrato hidroetanólico floral de Spathoglottis unguiculata (Labill.) Rchb. F. (Orchidaceae). Arquivos Científicos, 4(1), 79-87. DOI:

Menezes Filho, A. C. P., Ventura, M. V. A., Castro, C. F. S., Soares, F. A. L., Favareto, R., Taques, A. S., & Teixeira, M. B. (2022). Prospecção fitoquímica, físico-química e atividades biológicas do extrato etanólico floral de Miconia chamissois Naudin (Melastomataceae). Hoehnea, 49, e502021. DOI:

Menezes Filho, A. C. P., Santos, M. C., Sousa, W. C., & Castro, C. F. S. (2020). Avaliações físico-químicas, fitoquímicas e bioativas do extrato hidroetanólico floral de Styrax ferrugineus Nedd & Mart. (Laranjinha-do-cerrado). Brazilian Journal of Natural Sciences, 3(3), 380-398. DOI:

Moreira, S. N., Pott, V. J., Silva, R. H. , & Júnior, G. A. D. (2019). Flora and vegetation structure of vereda in southwestern Cerrado. Oecologia Australis, 23(4), 776-798. DOI:

Naseem, U., Muhammad, Z., Farhat, Ali, K., & Shazeb, K. (2014). A review on general introduction to medicinal plants, its phytochemicals and role of heavy metal and inorganic constituents. Life Science, 11(7s), 520-527.

Navarrete, P., Pizzi, A., Pasch, H., & Rode, K. (2013). Delmotte characterization of two maritime pine tannins as wood adhesives. Journal of Adhesion Science and Technology, 27(22), 2462-2479. DOI:

Naz, R., Bano, A., Nosheen, A., Yasmin, H., Keyani, R., Shah, S. T. A., Anwar, Z., & Roberts, T. H. (2021). Induction of defense-related enzymes and enhanced disease resistance in maize against Fusarium verticillioides by seed treatment with Jacaranda mimosifolia formulations. Scientific Reports, 11(59), 1-15. DOI:


Njoku, K. L., Akinyede, O. R., & Obidi, O. F. (2020). Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. Scientific African, 10, e00545. DOI:

Pandey, A. K. (2007). Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parihenium histerophorus: an in vitro study. National Academy Science Letters, 30(11/12), 383-386.

Parekh, J., & Chanda, S. (2007). In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turkish Journal of Biology, 31(1).

Polloni-Barros, L. C., Hamawaki, O. T., Polloni, L., Barros, H. L. S., Morais, T. P., Hamawaki, R. L., Hamawaki, C. D. L., Juliatti, F. C., & Nogueira, A. P. O. (2022). Soybean genotypes selection with resistance to white mold and agronomic performance from moderately resistant parents. Scientia Agricola, 79(5), e20210050. DOI:

Prado, J. M. A., Menezes Filho, A. C. P., Ventura, M. V. A., Castro, C. F. S., Teixeira, M. B., & Soares, F. A. L. (2022). Prospecção fitoquímica e atividade antifúngica de extratos florais de Tabebuia roseoalba (Ridl.) Sandwith e Jacaranda cuspidifolia Mart. Nativa, 10(4), 554-558. DOI:

Resende, I. L. M., Chaves, L. J., & Rizzo, J. Â. (2013). Floristc and phytosociological analysis of palm swamps in the central part of the Brazilian savanna. Acta Botanica Brasilica, 27(1), 205-225. DOI:

Sabir, S. M., Zeb, A., Mahmood, M., Abbas, S. R., Ahmad, Z., & Iqbal, N. (2021). Phytochemical analysis and biological activities of ethanolic extract of Curcuma longa rhizome. Brazilian Journal of Biology, 81(3), 737-740. DOI:

Struwe, L., Kadereit, W., Klackenberg, J., Nilsson, S., Thiv, M., Von-Hagen, K. B., & Albert, V. A. (2002). Systematics, character evolution, and biogeography of Gentianaceae, incluinding a new tribal and subtribal classification. In: Gentianaceae: systematics and natural history. Edited by Struwe, L., & Albert. V. A., Cambridge University Press, New York, 21-309 p. DOI:

Verma, A. K., & Singh, S. (2020). Phytochemical analysis and in vitro cytostatic potential of ethnopharmacological important medicinal plants. Toxicology Reports, 7, 443-452. DOI:

Wang, Z., Ma, L-Y., Cao, J., Li, Y-L., Ding, L-N., Zhu, K-M., Yang, Y-H., & Tan, X-L. (2019). Recent advances in mechanisms of plant defense to Sclerotinia sclerotiorum. Frontiers in Plant Science, 10(1314), 1-14. DOI:

Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3(12), 10-14.

Yang, Y., Ju, Z., Yang, Y., Zhang, Y., Yang, L., & Wang, Z. (2021). Phytochemical analysis of Panax species: a review. Journal of Ginseng Research, 45, 1-21. DOI:




How to Cite

Silva, L. G., Carvalho, L. E. R. de, Sharma, P., Melo, A. F., Menezes Filho, A. C. P. de, & Ventura, M. V. A. (2024). Phytochemistry and antifungal activity of floral ethanolic extract of Schultesia aptera Cham. (Gentianaceae f.). Brazilian Journal of Science, 3(7), 17–25.



Agrarian and Biological Sciences