The paraheight of linear groups

Authors

  • Behnam Razzaghmaneshi Assistant Professor of Mathematics, Algebra, Islamic Azad University, Talesh Branch, Talesh, Iran

DOI:

https://doi.org/10.14295/bjs.v2i11.377

Keywords:

linear groups, paraheight groups, finite groups

Abstract

If G is a subgroup of GL (n, F) G has paraheight at most w + [log, n!]. If G is a subgroup of GL (n, R) where R is a finitely generated integral domain then G has finite Paraheight.

References

Carter, R., Fischer, B., & Hawkes, T. (1968). Extreme classes of finite soluble groups. Journal of Algebra, 9(3), 285-313. https://doi.org/10.1016/0021-8693(68)90027-6 DOI: https://doi.org/10.1016/0021-8693(68)90027-6

Cassels, J. W. S., & Frghlich, A. (1967). Algebraic Number Theory. Academic Press, New York/London, 1967.

Gruenberg, K. W. (1966). The Engel structure of linear groups. Journal of Algebra, 8(3), 291-303. https://core.ac.uk/download/pdf/82532295.pdf DOI: https://doi.org/10.1016/0021-8693(66)90003-2

Hall, M. (1959). The Theory of Groups. Macmillan Co., New York.

Platonov, V. P. (1966). The Frattini subgroup of linear groups and finite approximability. Doklady Akademii Nauk SSSR, 171(4), 798-801.

Robinson, D. J. S. (1968). Infinite Soluble and Nilpotent Groups. Queen Mary College Mathematics Notes, London.

Schenkman, E. (1965). Group Theory. Van Nostrand Co., Princeton.

Scott, W. R. (1964). Group Theory. Prentice Hall, Englewood Cliffs, N. J.

Wehrfritz, B. A. F. (1966). Periodic Linear Groups. Ph.D. Thesis, University of London.

Wehrfritz, B. A. F. (1969). Infinite Linear Groups. Queen Mary College Mathematics Notes, London.

Downloads

Published

2023-11-01

How to Cite

Razzaghmaneshi, B. (2023). The paraheight of linear groups. Brazilian Journal of Science, 2(11), 14–17. https://doi.org/10.14295/bjs.v2i11.377