Nilpotent and supersoluble groups
DOI:
https://doi.org/10.14295/bjs.v2i8.363Keywords:
supersoluble subgroup, finite groups, mutually permutable productAbstract
Let G = AB be the mutually permutable product of this supersoluble subgroups A and B. If G’ is nilpotent, then G is supersoluble.
References
Amberg, B., Franciosi, S., & de Giovanni, F. (1993). Products of Groups. A Clarendon Press Publication, Oxford. Oxford Mathematical Monographs, Hardcover, Published, 25 February 1993, 232 p. DOI: https://doi.org/10.1093/oso/9780198535751.001.0001
Asaad, M., & Shaalan, A. (1989). On the supersolvability of finite groups. Archiv der Mathematik, 53, 318-326. https://doi.org/10.1007/BF01195210 DOI: https://doi.org/10.1007/BF01195210
Baer, R. (1957). Classes of finite groups and their properties. Illinois Journal of Mathematics, 1(2), 115-187. DOI: https://doi.org/10.1215/ijm/1255379396
Ballester-Bolinches, A., Cossey, J., & Pedraza-Aguilera, M. C. (2001). On products of finite supersoluble groups. Communications in Algebra, 29(7), 3145-3152. https://doi.org/10.1081/AGB-5013 DOI: https://doi.org/10.1081/AGB-5013
Ballester-Bolinches, A., Pérez Ramos, M. D., & Pedraza-Aguilera, M. C. (1999). Totally and mutually permutable products of finite groups. In: Groups St. Andrews 1997 in Bath I, In: London Math. Soc. Lecture Note Ser., 260, Cambridge University Press, Cambridge, pp. 65-68. DOI: https://doi.org/10.1017/CBO9781107360228.005
Carocca, A. (1992). p-supersolvability of factorized finite groups. Hokkaido Mathematics Journal, 21(3), 395-403. https://doi.org/10.14492/hokmj/1381413718 DOI: https://doi.org/10.14492/hokmj/1381413718
Carocca, A., & Maier, R. (1997). Theorems of Kegel–Wielandt type. In: Groups St. Andrews 1997 in Bath I, in: London Math. Soc. Lecture Note Ser., vol. 260, Cambridge University Press, Cambridge, pp. 195-201. DOI: https://doi.org/10.1017/CBO9781107360228.011
Doerk, K., & Hawkes, T. O. (1992). Finite Soluble Groups. In: de Gruyter Expositions in Mathematics, 4, de Gruyter, Berlin, New York, Watler de Gruyter & Co., D-1000 Berlin 30, 880 p. DOI: https://doi.org/10.1515/9783110870138
Itô, N. (1955). Über das produkt von zwei abelschen Gruppen. Mathematische Zeitschrift, 62, 400-401. http://eudml.org/doc/169505 DOI: https://doi.org/10.1007/BF01180647
Monakhov, V. S. (2021). On the supersoluble residual of mutually permutable products. 1-4. https://arxiv.org/pdf/1612.02349.pdf or https://www.arxiv-vanity.com/papers/1612.02349/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Behnam Razzaghmaneshi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.