Use of biochar for enhance carbon sequestration to mitigate climate change and growth of maize in Sudan savanna zone of Nigeria

Authors

  • Yunusa Mustapha Department of Agricultural Education, Federal College of Education (Technical), Gombe, Nigeria
  • Ibrahim Manu Department of Agricultural Education, Federal College of Education (Technical), Gombe, Nigeria
  • Ibrahim Alhassan Department of Agronomy, Federal University, Gashua, Yobe State, Nigeria

DOI:

https://doi.org/10.14295/bjs.v1i12.207

Keywords:

soil properties, carbon sequestration, greenhouse effect, climate change

Abstract

Application of biochar to the soil improves its physical, chemical and biological characteristics, promoting plant growth and productivity. The potential of biochar for carbon sequestration and its ability to reduce greenhouse gas emissions make it a very interesting alternative to counteract the adverse effect of climate change. The study examined the use of Biochar to enhance carbon sequestration and growth of maize in theSudan savanna zone of Nigeria. The experiment was conducted during the dry season of 2021/2022 at the Teaching and Research Farm of the Federal College of Horticulture, Dadin Kowa, Nigeria. Treatments involved seven levels of biochar (0, 2.5, 5.0, 10, 20, 30 and 40 t ha-1) which laid out in a randomized complete block design replicated three times. Data were collected on growth parameters, yield and yield components and post-harvest soil parameters were also determined for each treatment. Results indicated that biochar improves soil properties such as soil organic carbon, total nitrogen, available phosphorus and water-holding capacity of the soil. Carbon was sequestrated with biochar application and significantly higher under 40 t ha-1 treatment. It is recommended that biochar could be used for improved soil properties and carbon storage to mitigate the greenhouse effect.

References

Allohverdi, T., Mohanty, A. K., Roy, P., Misra, M. (2021). A Review on Current Status of Biochar Uses in Agriculture. Molecules, 26, 5584. https://doi.org/10.3390/molecules26185584. DOI: https://doi.org/10.3390/molecules26185584

Black, G.R. and Hartge, K.H. (1986). Particle density. In Klute, A (ed) Methods of Soil Analysis part 1, Physical and Mineralogical Methods. Agron. 9 ASA. INC. Madison. W.E. USA pp 377-382. DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c14

Blackwell, P., Joseph, S., Munroe, P., Anawar, H. M., Storer, P., Gilkes, R., Solaiman, Z. M. (2015). Influences of Biochar and Biochar-Mineral Complex on Mycorrhizal Colonisation and Nutrition of Wheat and Sorghum. Pedosphere, 25, 686–695. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1016/S1002-0160(15)30049-7

Borchard, N., Siemens, J., Ladd, B., Möller, A., Amelung, W. (2014). Application of to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res., 144, 184–194. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1016/j.still.2014.07.016

Chan, K. Y., Zwieten, L., Meszaros, L. Downie, A., Joseph, S. (2007). Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research, 45, 629-634 https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1071/SR07109

Chan, K.Y., Zwieten, L., Meszaros, L. Downie, A., Joseph, S. (2008). Using poultry litter biochar as soil amendments. Australian Journal of Soil Research, 46(5), 437-444. http://doi.org/10.1071/SR08036. DOI: https://doi.org/10.1071/SR08036

Ding, F., Van Zwieten, L., Zhang, W., Weng, Z. H., Shi, S., Wang, J., Meng, J. (2018). A -analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. Journal of Soils and Sediments, 18, 1507–1517. https://doi.org/10.1007/s11368-017-1899-6 DOI: https://doi.org/10.1007/s11368-017-1899-6

Esu, I. E. (1991). Detailed soil survey of NIHORT farm, Bunkure, Kano State. IAR/ABU Zaria Federal Department of Agricultural Land Resources [FDALR] (2004). Soil Test-based Fertilizer Recommendations for Extension Workers. Altimate Communication Production, pp. 39.

Gluba, Ł., Rafalska-Przysucha, A., Kacprzak, A., Usowicz, B., Szewczak, K., Łukowski, M., Szlazak, R., Vitková, J., Kobyłecki, R., Bis, Z., et al. (2021). Effect of Fine Size-Fractionated Sunflower Husk Biochar on Water Retention Properties of Arable Sandy Soil. Materials, 14. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.3390/ma14061335

Huang, Y., Sun, W. J., Zhang, W., Yu, Y. Q. (2010). Changes in soil organic carbon of terrestrial ecosystems in China: A mini review. Sci. China Life Sci., 53: 766-775. https://doi.org/10.1007/s11427-010-4022-4. DOI: https://doi.org/10.1007/s11427-010-4022-4

Institute for Carbon Removal Law and Policy (2018). Soil Carbon and Biochar. fact sheets on carbon removal, www.american.edu/sis/carbonremoval/factsheets (retrieved on 16th August, 2019).

IPCC (2015). Intergovernment Panel on Climate Change. 2016 Bulletin.

Kameyama, K., Miyamoto, T., Iwata, Y., Shiono, T. (2016). Influences of feedstock and pyrolysis on the nitrate adsorption of biochar. Soil Science and Plant Nutrition., 62(2),180-184. https://doi.org/10.1080/00380768.2015.1136553. DOI: https://doi.org/10.1080/00380768.2015.1136553

Keske, C., Godfrey, T., Hoag, D.L., Abedin, J. (2020). Economic feasibility of biochar and coproduction from Canadian black spruce forest. Food Energy Secur., 9. http://doi.org/10.1002/fes3.188. DOI: https://doi.org/10.1002/fes3.188

Lehman, J., Cheng, C. H., Nguyen, B., Liang, B., Major, J., Smernik, R. (2007). Permanency and long-term changes of bio-char in soil. International Agriculture Initiative (IAI)Conference, Terrigal, Australia., pp. 23.

Lehmann, J., Joseph, S. (2009). Biochar for environmental management: an Introduction. In J. Lehmann, & S. Joseph (Eds.), Biochar for environmental management, science, technology and implementation (pp. 1–12). Taylor & Francis Group.

Mclean, E. O. (1982). Soil pH and Lime Requirement. In: Page, A.L., Miller, R.H., Keeny, D.S. (Eds). Methods of Soil Analysis. Part 2, 2nd ed Agronomy Monograph No. 9. ASA and SSSA, Madison, WI, pp. 199-234.

Moreno-Riascos, S. & Ghneim-Herrera, T. (2020). Impact of Biochar use on agricultural production and climate change. A review. Agronomia Colombiana, 38(3), 367-381 http://doi.org/10.15446/agron.colomb.v38n3.87398. DOI: https://doi.org/10.15446/agron.colomb.v38n3.87398

Mustapha, S., Hamman, H. K., Abdulhamid, N. A. (2010). Status and distribution of extractable micronutrients in Haplustults in Yamaltu-Deba Local Government Area, Gombe State, Nigeria. Journal of Soil Science and Environmental Management, 1(8), 200-204.

Nair, V. D., Nair, P. K. R., Dari, B., Freitas, A. M., Chatterjee N., Pinheiro F. M. (2017) Biochar in the Agroecosystem–Climate-Change–Sustainability Nexus. Front. Plant Sci. 8, 2051. http://doi.org/10.3389/fpls.2017.02051 DOI: https://doi.org/10.3389/fpls.2017.02051

Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., Cornelis, W., Boeckx, P. (2015). Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy, 62, 65-78. https://doi.org/10.1016/j.eja.2014.09.006 DOI: https://doi.org/10.1016/j.eja.2014.09.006

Novotny, E. H., Maia, C. M. B. de F., Carvalho, M. T. de M., Madari, B. E. (2015). Biochar: Pyrogenic carbon for agricultural use—A critical review. Revista Brasileira de Ciência do Solo, 39(2), 321-344. https://doi.org/10.1590/01000683rbcs2014.0818. DOI: https://doi.org/10.1590/01000683rbcs20140818

Onwuka, M. I., Nwangwu, B. C. (2016). Characterization of Biochar Produced from Diverse Feedstocks used as amendment on Acidic ultisols at Umudike, Abia State, Nigerian Journal of Soil Science, 26.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rasool, R., Kukal, S., Hira, G. (2008). Soil organic carbon and physical properties as affected by long term application of FYM and inorganic fertilisers in maize_wheat system. Soil and Tillage Research /101, 31-36. https://doi.org/10.1016/j.still.2008.05.015. DOI: https://doi.org/10.1016/j.still.2008.05.015

Razzaghi, F., Obour, P. B., Arthur, E. (2020) Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1016/j.geoderma.2019.114055

Repo, A., Tuomi, M., Liski, J. (2010) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy, 3, 107–115. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1111/j.1757-1707.2010.01065.x

Rodríguez, L., Salazar, P., Preston, T. R. (2009). Effect of biochar and biodigester effluent on growth of maize in acid soils. Livestock Research for Rural Development, 21, 110.

Saiz, G., Albrecht, A. (2016). Methods for Smallholder Quantification of Soil Carbon Stocks and Stock Changes. In: Rosenstock, T., Rufino, M., Butterbach_Bahl, K., Wollenberg, L., Richards, M. (eds) Methods for Measuring DOI: https://doi.org/10.1007/978-3-319-29794-1_7

Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture. Springer, Cham. https://doi.org/10.1007/978_3_319_29794_17

Spokas, K. A., Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. J. Environ. Sci., 3, 179. http://hdl.handle.net/2047/d10019583.

Spore (2012). Climate Change: Agriculture at the negotiating table. Technical Centre for Agricultural and Rural Cooperation (CTA). Wageningen, The Netherlands (156). http://spore.cta.int 5. 27pp.

Spore (2015). Climate Smart Agriculture. Technical Centre for Agricultural and Rural Cooperation (CTA). Wageningen, The Netherlands (Special issue). http://spore.cta.int 5. 35pp.

Steiner, C., Glaser, B., Teixeira, W. G., Lehmann, J., Blum, W. E. H., Zech, W. (2008). Nitrogen retention and plant uptake

on a highly weathered Central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 17(6), 893- 899. https://doi.org/10.1002/jpln.200625199. DOI: https://doi.org/10.1002/jpln.200625199

Thomas, G.W. (1982). Exchangeable cation. In: Page, A. L., Miller, R. H., Keeny, D. S. (Eds). Methods of Soil Analysis. Part 2, 2nd ed Agronomy Monograph No. 9. ASA and SSSA, Madison, WI, pp. 159-165. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c9

Ventura, M., Alberti, G., Panzacchi, P., Vedove, G. D., Miglietta, F., & Tonon, G. (2019). Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment. Biology and Fertility of Soils, 55, 67-78. https://doi.org/10.1007/s00374-018-1329-y DOI: https://doi.org/10.1007/s00374-018-1329-y

Warnock, D. D., Lehmann, J., Kuyper, T. W., Rillig, M. C. (2007). Mycorrhizal responses to biochar on soil concepts and mechanisms. Plant and Soil, 300, 9-20. DOI: https://doi.org/10.1007/s11104-007-9391-5

Woolf, D., Amonette, J., Street-Perrott, F., Lehmann, J., Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications., 1, 56. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1038/ncomms1053

Xu, X., Cheng, K., Wu, H., Sun, J., Yue, Q., Pan, G. (2018). Greenhouse gas mitigation potential in crop production with biochar soil amendment-a carbon footprint assessment for cross- site field experiments from China. GCB Bioenergy, 11, 592–605. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1111/gcbb.12561

Yu, O. Y., Raichle, B., Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy Environment and Engineering. 4, 44. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1186/2251-6832-4-44

Downloads

Published

2022-12-04

How to Cite

Mustapha, Y., Manu, I., & Alhassan, I. (2022). Use of biochar for enhance carbon sequestration to mitigate climate change and growth of maize in Sudan savanna zone of Nigeria. Brazilian Journal of Science, 1(12), 63–75. https://doi.org/10.14295/bjs.v1i12.207

Issue

Section

Agrarian and Biological Sciences