Use of biochar for enhance carbon sequestration to mitigate climate change and growth of maize in Sudan savanna zone of Nigeria
DOI:
https://doi.org/10.14295/bjs.v1i12.207Keywords:
soil properties, carbon sequestration, greenhouse effect, climate changeAbstract
Application of biochar to the soil improves its physical, chemical and biological characteristics, promoting plant growth and productivity. The potential of biochar for carbon sequestration and its ability to reduce greenhouse gas emissions make it a very interesting alternative to counteract the adverse effect of climate change. The study examined the use of Biochar to enhance carbon sequestration and growth of maize in theSudan savanna zone of Nigeria. The experiment was conducted during the dry season of 2021/2022 at the Teaching and Research Farm of the Federal College of Horticulture, Dadin Kowa, Nigeria. Treatments involved seven levels of biochar (0, 2.5, 5.0, 10, 20, 30 and 40 t ha-1) which laid out in a randomized complete block design replicated three times. Data were collected on growth parameters, yield and yield components and post-harvest soil parameters were also determined for each treatment. Results indicated that biochar improves soil properties such as soil organic carbon, total nitrogen, available phosphorus and water-holding capacity of the soil. Carbon was sequestrated with biochar application and significantly higher under 40 t ha-1 treatment. It is recommended that biochar could be used for improved soil properties and carbon storage to mitigate the greenhouse effect.
References
Allohverdi, T., Mohanty, A. K., Roy, P., Misra, M. (2021). A Review on Current Status of Biochar Uses in Agriculture. Molecules, 26, 5584. https://doi.org/10.3390/molecules26185584. DOI: https://doi.org/10.3390/molecules26185584
Black, G.R. and Hartge, K.H. (1986). Particle density. In Klute, A (ed) Methods of Soil Analysis part 1, Physical and Mineralogical Methods. Agron. 9 ASA. INC. Madison. W.E. USA pp 377-382. DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c14
Blackwell, P., Joseph, S., Munroe, P., Anawar, H. M., Storer, P., Gilkes, R., Solaiman, Z. M. (2015). Influences of Biochar and Biochar-Mineral Complex on Mycorrhizal Colonisation and Nutrition of Wheat and Sorghum. Pedosphere, 25, 686–695. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1016/S1002-0160(15)30049-7
Borchard, N., Siemens, J., Ladd, B., Möller, A., Amelung, W. (2014). Application of to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res., 144, 184–194. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1016/j.still.2014.07.016
Chan, K. Y., Zwieten, L., Meszaros, L. Downie, A., Joseph, S. (2007). Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research, 45, 629-634 https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1071/SR07109
Chan, K.Y., Zwieten, L., Meszaros, L. Downie, A., Joseph, S. (2008). Using poultry litter biochar as soil amendments. Australian Journal of Soil Research, 46(5), 437-444. http://doi.org/10.1071/SR08036. DOI: https://doi.org/10.1071/SR08036
Ding, F., Van Zwieten, L., Zhang, W., Weng, Z. H., Shi, S., Wang, J., Meng, J. (2018). A -analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. Journal of Soils and Sediments, 18, 1507–1517. https://doi.org/10.1007/s11368-017-1899-6 DOI: https://doi.org/10.1007/s11368-017-1899-6
Esu, I. E. (1991). Detailed soil survey of NIHORT farm, Bunkure, Kano State. IAR/ABU Zaria Federal Department of Agricultural Land Resources [FDALR] (2004). Soil Test-based Fertilizer Recommendations for Extension Workers. Altimate Communication Production, pp. 39.
Gluba, Ł., Rafalska-Przysucha, A., Kacprzak, A., Usowicz, B., Szewczak, K., Łukowski, M., Szlazak, R., Vitková, J., Kobyłecki, R., Bis, Z., et al. (2021). Effect of Fine Size-Fractionated Sunflower Husk Biochar on Water Retention Properties of Arable Sandy Soil. Materials, 14. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.3390/ma14061335
Huang, Y., Sun, W. J., Zhang, W., Yu, Y. Q. (2010). Changes in soil organic carbon of terrestrial ecosystems in China: A mini review. Sci. China Life Sci., 53: 766-775. https://doi.org/10.1007/s11427-010-4022-4. DOI: https://doi.org/10.1007/s11427-010-4022-4
Institute for Carbon Removal Law and Policy (2018). Soil Carbon and Biochar. fact sheets on carbon removal, www.american.edu/sis/carbonremoval/factsheets (retrieved on 16th August, 2019).
IPCC (2015). Intergovernment Panel on Climate Change. 2016 Bulletin.
Kameyama, K., Miyamoto, T., Iwata, Y., Shiono, T. (2016). Influences of feedstock and pyrolysis on the nitrate adsorption of biochar. Soil Science and Plant Nutrition., 62(2),180-184. https://doi.org/10.1080/00380768.2015.1136553. DOI: https://doi.org/10.1080/00380768.2015.1136553
Keske, C., Godfrey, T., Hoag, D.L., Abedin, J. (2020). Economic feasibility of biochar and coproduction from Canadian black spruce forest. Food Energy Secur., 9. http://doi.org/10.1002/fes3.188. DOI: https://doi.org/10.1002/fes3.188
Lehman, J., Cheng, C. H., Nguyen, B., Liang, B., Major, J., Smernik, R. (2007). Permanency and long-term changes of bio-char in soil. International Agriculture Initiative (IAI)Conference, Terrigal, Australia., pp. 23.
Lehmann, J., Joseph, S. (2009). Biochar for environmental management: an Introduction. In J. Lehmann, & S. Joseph (Eds.), Biochar for environmental management, science, technology and implementation (pp. 1–12). Taylor & Francis Group.
Mclean, E. O. (1982). Soil pH and Lime Requirement. In: Page, A.L., Miller, R.H., Keeny, D.S. (Eds). Methods of Soil Analysis. Part 2, 2nd ed Agronomy Monograph No. 9. ASA and SSSA, Madison, WI, pp. 199-234.
Moreno-Riascos, S. & Ghneim-Herrera, T. (2020). Impact of Biochar use on agricultural production and climate change. A review. Agronomia Colombiana, 38(3), 367-381 http://doi.org/10.15446/agron.colomb.v38n3.87398. DOI: https://doi.org/10.15446/agron.colomb.v38n3.87398
Mustapha, S., Hamman, H. K., Abdulhamid, N. A. (2010). Status and distribution of extractable micronutrients in Haplustults in Yamaltu-Deba Local Government Area, Gombe State, Nigeria. Journal of Soil Science and Environmental Management, 1(8), 200-204.
Nair, V. D., Nair, P. K. R., Dari, B., Freitas, A. M., Chatterjee N., Pinheiro F. M. (2017) Biochar in the Agroecosystem–Climate-Change–Sustainability Nexus. Front. Plant Sci. 8, 2051. http://doi.org/10.3389/fpls.2017.02051 DOI: https://doi.org/10.3389/fpls.2017.02051
Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., Cornelis, W., Boeckx, P. (2015). Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy, 62, 65-78. https://doi.org/10.1016/j.eja.2014.09.006 DOI: https://doi.org/10.1016/j.eja.2014.09.006
Novotny, E. H., Maia, C. M. B. de F., Carvalho, M. T. de M., Madari, B. E. (2015). Biochar: Pyrogenic carbon for agricultural use—A critical review. Revista Brasileira de Ciência do Solo, 39(2), 321-344. https://doi.org/10.1590/01000683rbcs2014.0818. DOI: https://doi.org/10.1590/01000683rbcs20140818
Onwuka, M. I., Nwangwu, B. C. (2016). Characterization of Biochar Produced from Diverse Feedstocks used as amendment on Acidic ultisols at Umudike, Abia State, Nigerian Journal of Soil Science, 26.
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rasool, R., Kukal, S., Hira, G. (2008). Soil organic carbon and physical properties as affected by long term application of FYM and inorganic fertilisers in maize_wheat system. Soil and Tillage Research /101, 31-36. https://doi.org/10.1016/j.still.2008.05.015. DOI: https://doi.org/10.1016/j.still.2008.05.015
Razzaghi, F., Obour, P. B., Arthur, E. (2020) Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1016/j.geoderma.2019.114055
Repo, A., Tuomi, M., Liski, J. (2010) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy, 3, 107–115. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1111/j.1757-1707.2010.01065.x
Rodríguez, L., Salazar, P., Preston, T. R. (2009). Effect of biochar and biodigester effluent on growth of maize in acid soils. Livestock Research for Rural Development, 21, 110.
Saiz, G., Albrecht, A. (2016). Methods for Smallholder Quantification of Soil Carbon Stocks and Stock Changes. In: Rosenstock, T., Rufino, M., Butterbach_Bahl, K., Wollenberg, L., Richards, M. (eds) Methods for Measuring DOI: https://doi.org/10.1007/978-3-319-29794-1_7
Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture. Springer, Cham. https://doi.org/10.1007/978_3_319_29794_17
Spokas, K. A., Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. J. Environ. Sci., 3, 179. http://hdl.handle.net/2047/d10019583.
Spore (2012). Climate Change: Agriculture at the negotiating table. Technical Centre for Agricultural and Rural Cooperation (CTA). Wageningen, The Netherlands (156). http://spore.cta.int 5. 27pp.
Spore (2015). Climate Smart Agriculture. Technical Centre for Agricultural and Rural Cooperation (CTA). Wageningen, The Netherlands (Special issue). http://spore.cta.int 5. 35pp.
Steiner, C., Glaser, B., Teixeira, W. G., Lehmann, J., Blum, W. E. H., Zech, W. (2008). Nitrogen retention and plant uptake
on a highly weathered Central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 17(6), 893- 899. https://doi.org/10.1002/jpln.200625199. DOI: https://doi.org/10.1002/jpln.200625199
Thomas, G.W. (1982). Exchangeable cation. In: Page, A. L., Miller, R. H., Keeny, D. S. (Eds). Methods of Soil Analysis. Part 2, 2nd ed Agronomy Monograph No. 9. ASA and SSSA, Madison, WI, pp. 159-165. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c9
Ventura, M., Alberti, G., Panzacchi, P., Vedove, G. D., Miglietta, F., & Tonon, G. (2019). Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment. Biology and Fertility of Soils, 55, 67-78. https://doi.org/10.1007/s00374-018-1329-y DOI: https://doi.org/10.1007/s00374-018-1329-y
Warnock, D. D., Lehmann, J., Kuyper, T. W., Rillig, M. C. (2007). Mycorrhizal responses to biochar on soil concepts and mechanisms. Plant and Soil, 300, 9-20. DOI: https://doi.org/10.1007/s11104-007-9391-5
Woolf, D., Amonette, J., Street-Perrott, F., Lehmann, J., Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications., 1, 56. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1038/ncomms1053
Xu, X., Cheng, K., Wu, H., Sun, J., Yue, Q., Pan, G. (2018). Greenhouse gas mitigation potential in crop production with biochar soil amendment-a carbon footprint assessment for cross- site field experiments from China. GCB Bioenergy, 11, 592–605. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1111/gcbb.12561
Yu, O. Y., Raichle, B., Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy Environment and Engineering. 4, 44. https://doi.org/10.1038/ncomms1053. DOI: https://doi.org/10.1186/2251-6832-4-44
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Yunusa Mustapha, Ibrahim Manu, Ibrahim Alhassan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.