Application of fungicides in the vegetative stage of soybean [Glycine max (L.) Merrill]: Mini-review

Authors

DOI:

https://doi.org/10.14295/cerrado.v1i3.624

Keywords:

Fungicides, Soybean cultivation, Fungal diseases, Fungal resistance

Abstract

The significant growth of soybean cultivation [Glycine max (L.) Merrill], and the expansion of agriculture throughout Brazil, which occurred during the period of evidence of the industrial policy of import substitution, placed the product as an ideal crop to supply the global demand was growing. Several diseases have already been reported in soybeans, but the incidence and severity depend on some factors, such as climate, cultivars, pathogen inoculum potential, soil structure and fertility, and plant vigor, among others. The disease scenario in soybean crops in Brazil has been changing every year, with an increase in the severity of some diseases, both in the aerial part and those caused by soil-dwelling fungi. The use of resistant cultivars can be adopted and is the most efficient way to control diseases. However, even with adequate management, it is necessary to apply fungicides. For more efficient disease management, it is important to know the effectiveness of the main fungicides used in the crop, in terms of their ability to reduce the progress of the disease in the field; selecting the most efficient fungicides for management. The results of the study demonstrated that fungicides positioned in different application programs reduce the incidence of fungal diseases and improve productivity.

References

Abbas, H. K., Bellaloui, N., Butler, A. M., Nelson, J. L., Abou-Karam, M., & Shier, W. T. (2020). Phytotoxic responses of soybean (Glycine max L.) to botryodiplodin, a toxin produced by the charcoal rot disease fungus, Macrophomina phaseolina. Toxins, 12(1), 25. https://doi.org/10.3390/toxins12010025

Abrantes, M. F. (2023). Controle biológico de doenças foliares na soja. Trabalho de conclusão de curso em Agronomia, pelo Instituto Federal Goiano, Ceres, Goiás, Brasil, 15 p. Available in: https://repositorio.ifgoiano.edu.br/handle/prefix/3673. Access in: March 2024.

Agrofit. (2022). Sistema de agrotóxicos fitossanitários. Ministério da Agricultura, Pecuária e Abastecimento, published in: August 2022. Available in: https://agrofit.agricultura.gov.br/agrofit_cons/pri. Access in: May 2024.

Almeida, A. M. R., Ferreira, L. P., Yorinori, J. T., Silva, J. F. V., Henning, A. A., Godoy, C. V., Costamilan, L. M., & Meyer, M. C. (2005). Doenças da soja (Glycine max). In: Kimati, H., Amorim, L.; Rezende, J. A. M., Bergamin Filho, A., & Camargo, L.E.A. (Ed.). Manual de Fitopatologia. São Paulo: Agronômica Ceres, 4 ed., 569-588 p.

Alsajri, F. A., Wijewardana, C., Irby, J. T., Bellaloui, N., Krutz, L. J., Golden, B., Gao, W., & Reddy, K. R. (2020). Developing functional relationships between temperature and soybean yield and seed quality, Agronomy Journal, 112(1), 194-204. https://doi.org/10.1002/agj2.20034

Alves, V. M., & Juliatti, F. C. (2018). Fungicidas no manejo da ferrugem da soja, processos fisiológicos e produtividade da cultura. Summa Phytopathologica, 44(3), 245-251. http://dx.doi.org/10.1590/0100-5405/167203

Amira, M. B., Lopez, D., Mohamed, A. T., Khouaja, A., Chaar, H., Fumanal, B., Gousset-Dupont, A., Bonhomme, L., Label, P., Goupil, P., Ribeiro, S., Pujade-Renaud, V., Julien, J. L, Auguin, D., Venisse, J. -S. (2017). Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biological Control, 110, 70-78. https://dx.doi.org/10.1016/j.biocontrol.2017.04.008

Asadabadi, R. S., Hage-Ahmed, K., & Steinkellner, S. (2021). Biochar, compost and arbuscular mycorrhizal fungi: a tripartite approach to combat Sclerotinia sclerotiorum in soybean. Journal of Plant Diseases and Protection, 128, 1433-1445. https://doi.org/10.1007/s41348-021-00495-2

Ascari, J. P., Barro, J. P., Santana, F. M., Padua, J. M. V., Maciel, J. L. N. (2021). Sequential post-heading applications for controlling wheat blast: A 9-year summary of fungicide performance in Brazil. Plant Disease, 105(2). https://doi.org/10.1094/PDIS-06-21-1183-RE

Bandara, A. Y., Weerasooriya, D. K., Conley, S. P., Bradley, C. A., Allen, T. W., & Esker, P. D. (2020). Modeling the relationship between estimated fungicide use and disease-associated yield losses of soybean in the United States I: Foliar fungicides vs foliar diseases. PLoS ONE, 15(6), e0234390. https://doi.org/10.1371/journal.pone.0234390

Barbosa, G. F., Centurion, M. A. P. C., & Ferraudo, A. S. (2014). Potencial do manejo integrado da ferrugem asiática da soja: severidade da doença, desenvolvimento vegetativo e componentes da produção, cultivar MG/BR-46 (Conquista). Bioscience Journal, 30(1), 76-89. https://seer.ufu.br/index.php/biosciencejournal/article/download/15037/14483/0.

Barbosa, A. S., Pelúzio, J. M., Nascimento, I. R., Fidelis, R. R., & Sousa, S. M. (2019). Dessecação química e retardamento de colheita em soja visando à produção de sementes. Nativa, 7(1), 13-22. https://doi.org/10.31413/nativa.v7i1.6613

Barros, R. (2008). Doenças da cultura da soja. Barros, R. Tecnologia e produção de soja e milho, 2009, 109-122 p.

Bastos, R. W., Rossato, L., Goldman, G. H., & Santos, D. A. (2021). Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. Plos Pathogens, 17(12), e1010073. https://doi.org/10.1371/journal.ppat.1010073

Beckie, H. J., Busi, R., Lopez-Ruiz, F. J., & Umina, P. A. (2021). Herbicide resistance management strategies: how do they compare with those for insecticides, fungicides and antibiotics? Pest Management Science, 77(7), 3049-3056. https://doi.org/10.1002/ps.6395

Black, R. J. (2000). Complexo soja: fundamentos, situação atual e perspectiva. In: Câmara , G. M. S. (Ed.). Soja: tecnologia de produção II. Piracicaba: ESALQ, 118 p. Available in: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.conhecer.org.br/enciclop/2011a/agrarias/a%20cultura%20da%20soja.pdf. Access in: May 2024.

Braga, K., Fantin, L. H., Minchio, C. A., Scolin, L. B., Paduan, F. N., & Canteri, M. G. (2020). Sensibilidade de populações de Phakopsora pachyrhizi ao fungicida protioconazol. Summa Phytopathologica, 46(20, 150-154. http://dx.doi.org/10.1590/0100-5405/223207

Branco, J. E. H., Bartholomeu, D. B., Júnior, P. N.A., & Caixeta Filho, J. V. (2021). Mutual analyses of agriculture land use and transportation networks: The future location of soybean and corn production in Brazil. Agricultural Systems, 194, 103264. https://doi.org/10.1016/j.agsy.2021.103264

Chagas, L. F. B., Chagas Junior, A. F., Soares, L. P., & Fidelis, R. R. (2017). Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, 4(3), 97-102. https://dx.doi.org/10.32404/rean.v4i3.1529

Chang, X., Li, H., Naeem, M., Wu, X., Yong, T., Song, C., Liu, T., Chen, W., & Yang, W. (2020). Diversity of the seedborne fungi and pathogenicity of Fusarium species associated with intercropped soybean. Pathogens, 9(7), 531. https://doi.org/10.3390/pathogens9070531

Chung, G., & Singh, R. J. (2008). Broadening the genetic base of soybean: A multidisciplinary approach. Critical Reviews in Plant Sciences, 27(5), 295-341.

Colussi, J., Morgan, E. L., Schnitkey, G. D., & Padula, A. D. (2022). How communication affects the adoption of digital technologies in soybean production: A survey in Brazil. Agriculture, 12(5), 611. https://doi.org/10.3390/agriculture12050611

Corkley, I., Fraaije, B., & Hawkins, N. (2022). Fungicide resistance management: Maximizing the effective life of plant protection products. Plant Pathology, 71(1), 150-169. https://doi.org/10.1111/ppa.13467

Costa, R. F., Silva, A. G., Simon, G. A., Bessa, O. R., & Dias, M. O. (2019). Agronomic performance of transgenic soybean cultivars in Brazilian Cerrado. Acta Scientiarum, Agronomy, 41, 42713. https://doi.org/10.4025/actasciagron.v41i1.42713

Duffeck, M. R., Alves, K. S., Machado, F. J., Esker, P. D., & Del Ponte, E. M. (2020). Modeling yield losses and fungicide profitability for managing Fusarium head blight in Brazilian spring wheat. Phytopathology, 110(2). https://doi.org/10.1094/PHYTO-04-19-0122-R

El-Baky, N. A., & Amara, A. A. A. F. (2021). Recent approaches towards control of fungal diseases in plants: An updated review. Journal of Fungi, 7(11), 900. https://doi.org/10.3390/jof7110900

Embrapa. (2022). Empresa brasileira de pesquisa agropecuária. Embrapa soja. Soja em números (Safra 2022/23). Available in: <https://www.embrapa.br/soja/cultivos/soja1/dados-economicos>. Access in: September 2023.

Embrapa. (2011). Doenças e medidas de controle. In: Tecnologias de produção de soja – região central do Brasil 2012 e 2013. - Londrina: Embrapa Soja, 2011. 261 p. Sistemas de Produção/Embrapa Soja, 15,197-250. Available in: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/975595/tecnologias-de-producao-de-soja---regiao-central-do-brasil-2014. Access in: June 2024.

Ferreira, C. J. B., Silva, A. G., Tormena, C. A., Severiano, E. C., Tavares, R. L. M., Braz, G. B. P., & Paiva Filho, S. V. (2023). Physiological and agronomic response of soybean cultivars to soil compaction in the Brazilian Cerrado. Soil and Plant Nutrition, 82, e20220160. https://doi.org/10.1590/1678-4499.20220160

Freitas, M. (2011). A cultura da soja no Brasil: O crescimento da produção brasileira e o surgimento de uma nova fronteira agrícola. Enciclopedia Biosfera, 7(12). https://www.conhecer.org.br/ojs/index.php/biosfera/article/view/4287.

Freitas, M. (2011). A cultura da soja no Brasil: o crescimento da produção brasileira e o surgimento de uma nova fronteira agrícola. Enciclopédia Biosfera, 7(12). https://www.conhecer.org.br/ojs/index.php/biosfera/article/view/4287

Furlong, E. B., Furlong, V. B., Kupski, L., Scaglioni, P. T., Souza, T. D., & Christ-Ribeiro, A. (2020). Use of natural resources from southern Brazil as a strategy to mitigate fungal contamination. Critical Reviews in Food Science and Nutrition, 61(2), 275-282. https://doi.org/10.1080/10408398.2020.1726868

Galindo, F. S., Teixeira Filho, M. C. M., Buzetti, S., Ludkiewicz, M. G. Z., Rosa, P. A. L., & Tritapepe, C. A. (2018). Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(1), 51-56. https://doi.org/10.1590/1807-1929/agriambi.v22n1p51-56

Gikas, G. D., Parlakidis, P., Mavropoulos, T., & Vryzas, Z. (20220. Particularities of fungicides and factors affecting their fate and removal efficacy: A review. Sustainability, 14(7), 4056. https://doi.org/10.3390/su14074056

Goettel, W., Zhang, H., Li, Y., Qiao, Z., Jiang, H., Hou, D., Song, Q., Pantalone, V. R., Song, B-H., Yu, D., & An, Y-q. C. (2022). POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nature Communications, 13, 3051. https://doi.org/10.1038/s41467-022-30314-7

Grigolli, J. F. J. (2014). Infestação de Anthonomus grandis (Coleoptera: Curculionidae) em rebrota de algodoeiro. Pesquisa Agropecuária Tropical, 45, 200-208. https://www.scielo.br/j/pat/a/HY3ryPdbzsFRFsdvYfgd5Xh/

Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., Shuaije, G., & Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112. https://doi.org/10.1016/j.ecoenv.2021.112112

Hanke, D., Taschetto, G. H., Nascimento, S. G. S., Ávila, M. R., & Nunes, O. M. (2022). Percepção dos produtores de soja sobre o processo de difusão do controle biológico e manejo integrado de pragas. Nativa, 10(4), 558-565. https://doi.org/10.31413/nativa.v10i4.13865

Horikoshi, R. J., Dourado, P. M., Berger, G. U., Fernandes, D. S., Omoto, C., Willse, A., Martinelli, S., Head, G. P., & Corrêa, A. S. (2021). Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil. Scientific Reports, 11, 15956. https://doi.org/10.1038/s41598-021-95483-9

Hossain, M., Sultana, F., Li, W., Tran, L-S., & Mostofa, M. G. (2023). Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the pathogenomic features of a global pathogen. Cells, 12(7), 1063. https://doi.org/10.3390/cells12071063

Hu, M., & Chen, S. (2021). Non-target site mechanisms of fungicide resistance in crop pathogens: A review. Microorganisms, 9(3), 502. https://doi.org/10.3390/microorganisms9030502

Ito, M. F. (2013). Principais doenças da cultura da soja e manejo integrado. Nucleus, 10(3), 83-101. https://www.academia.edu/download/44016180/908-4127-1-PB.pdf

Jaques, L. B. A., Coradi, P. C., Rodrigues, H. E., Dubal, Í. T. P., Padia, C. L., Lima, R. E., & Souza, G. A. C. (2022). Post-harvesting of soybean seeds – engineering, processes technologies, and seed quality: a review. International Agrophysics, 36(2), 59-81. https://doi.org/10.31545/intagr/147422

Junqueira, V. B., Müller, C., Rodrigues, A. A., Amaral, T. S., Batista, P. F., Silva, A. A., & Costa, A. C. (2021). Do fungicides affect the physiology, reproductive development and productivity of healthy soybean plants? Pesticide Biochemistry and Physiology, 172, 104754.

Kang, S. E., Sumabat, L. G., Melie, T., Mangum, B., Momany, M., & Brewer, M. T. (2022). Evidence for the agricultural origin of resistance to multiple antimicrobials in Aspergillus fumigatus, a fungal pathogen of humans. G3 Genes/Genomes/Genetics, 12(2). https://doi.org/10.1093/g3journal/jkab427

Kazartsev, I. A., Gomzhina, M. M., Gasich, E. L., Khlopunova, L. B., & Gannibal, P. B. (2023). Biodiversity of Colletotrichum spp. on several wild and cultivated plants. Biology Bulletin Reviews, 13, S59-S70. https://doi.org/10.1134/S2079086423070071

Lin, X., Liu, B., Weller, J. L., Abe, J., & Kong, F. (2021). Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 63(6), 981-994. https://doi.org/10.1111/jipb.13021

Lockhart, S. R., Chowdhary, A., & Gold, J. A. W. (2023). The rapid emergence of antifungal-resistant human-pathogenic fungi. Nature Reviews Microbiology, 21, 818-832. https://doi.org/10.1038/s41579-023-00960-9

Matei, G. (2018). Genomic selection in soybean: accuracy and time gain in relation to phenotypic selection. Molecular Breeding, 38(117). <https://link.springer.com/article/10.1007/s11032-018-0872-4

Matsuzaki, Y., Kiguchi, S., Suemoto, H., & Iwahashi, F. (2020). Antifungal activity of metyltetraprole against the existing Qol-resistant isolates of various plant pathogenic fungi. Pest Management Science, 76(5), 1443-1750. https://doi.org/10.1002/ps.5697

Meira, D. M., Woyann, L. G., Bozi, A. H., Milioli, A. S., Beche, E., Panho, M. C., Madella, L. A., Barrionuevo, F., Marchioro, V. S., & Benin, G. (2020). Asian soybean rust: a scientometric approach of Phakopsora pachyrhizi studies. Euphytica, 216, 133. https://doi.org/10.1007/s10681-020-02667-x

Metz, L. M., Henning, F. A., & Zimmer, P. D. (2009). Bioprotetores e fungicidas químicos no tratamento de sementes de soja. Ciência Rural, 39(1), 13-18. https://doi.org/10.1590/S0103-84782009000100003

Moraes, S. R. G., Silva, J. B., Bonaldo, S. M., & Souza, W. D. (2023). Colletootrichum spp: Sensibilidade à fungicidas e reação à cultivares de soja. Nativa, 9(3), 273-280. https://doi.org/10.31413/nativa.v9i3.10432

Nascimento, S. R. C., Silva, F. H. A., Cruz, B. L. S., Dantas, A. M. M., Ambrósio, M. M. Q., Senhor, R. F. (2016). Sobrevivência de estrutura de resistência de Macrophomina phaseolina e Sclerotium rolfsii em solo tratado biologicamente. Revista Agro@mbiente On-line, 10(1), 50-56. http://dx.doi.org/10.18227/1982-8470ragro.v10i1.2947

Oliveira, G. L. T., & Schneider, M. (2016). The politics of flexing soybeans: China, Brazil and global agroindustrial restructuring. The Journal of Peasant Studies, 43(1), 167-194. https://doi.org/10.1080/03066150.2014.993625

Ons, L., Bylemans, D., Thevissen, K., & Cammue, B. P. A. (2020). Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms, 8(12), 1930. https://doi.org/10.3390/microorganisms8121930

Pacholak, A., Burlaga, N., Frankowski, R., Zgoła-Grześkowiak, A., & Kaczorek, E. (2022). Azole fungicides: (Bio)degradation, transformation products and toxicity elucidation. Science of The Total Environment, 802, 149917. https://doi.org/10.1016/j.scitotenv.2021.149917

Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods of management of soilborne diseases in crop production. Agriculture, 10(1), 16. https://doi.org/10.3390/agriculture10010016

Pozebon, H., Marques, R. P., Padilha, G., O’Neal, M., Valmorbida, I., Bevilaqua, J. G., Tay, W. T., & Arnemann, J. A. (2020). Arthropod invasions versus soybean production in Brazil: A review. Journal of Economic Entomology, 113(4), 1591-1608. https://doi.org/10.1093/jee/toaa108

Priolli, R. H. G., Mendes-Júnior, C. T., Arantes, N. E., & Contel, E. P. B. (2002). Characterization of Brazilian soybean cultivars using microsatellite markers. Genetics and Molecular Biology, 25(2), 185-193. https://doi.org/10.1590/S1415-47572002000200012

Rahman, M. T., Rubayer, M. T., & Bhuiyan, M. K. A. (2020). Integrated management of rhizoctonia root rot disease of soybean caused by Rhizoctonia solani. Nippon Journal of Environmental Science, 1(7), 1018.

Raut, Y. Y., Shedekar, V. S., Islam, K. R., Gonzalez, J. M., Watts, D. B., Dick, W. A., Flanagan, D. C., Fausey, N. R., Batte, M. T., & Reeder, R. C. (2020). Soybean yield response to gypsum soil amendment, cover crop, and rotation. Agricultural & Environmental Letters, 5(1), e20020. https://doi.org/10.1002/ael2.20020

Reis, E. M., Guerra, W. D., Reis, A. C., Zanatta, M., & Sautura, F. (2021). Fungi resistance to multissite fungicides. Journal of Agriculture Science, 13(11), 141-152. https://doi.org/10.5539/jas.v13n11p141

Ribeiro, L. A. E., Júnior, D. P. M., Sá, D. D., Araújo, F. P., & Souza, J. E. B. (2019). Viabilidade econômica do uso de fungicidas no controle da ferrugem asiática da soja. Ipê Agronomic Journal, 3(2), 35-43.

Roese, A. D., Zielinski, E. C., & De Mio, L. L. M. (2020). Plant diseases in afforested crop-livestock systems in Brazil. Agricultural Systems, 185, 102935. https://doi.org/10.1016/j.agsy.2020.102935

Romeiro, R. S. (2007). Controle biológico de doenças de plantas: Fundamentos. Viçosa, 269 p.

Rondon, M. N., & Lawrence, K. (2021). The fungal pathogen Corynespora cassiicola: A review and insights for target spot management on cotton and soya bean. Journal of Phytopathology, 169(6), 329-338. https://doi.org/10.1111/jph.12992

Roth, M. G., Webster, R. W., Muller, D. S., Chilvers, M. I., Faske, T. R., Mathew, F. M., Bradley, C. A., Damicone, J. P., Kabbage, M., & Smith, D. L. (2020). Integrated management of important soybean pathogens of the United States in changing climate. Journal of Integrated Pest Management, 11(1), 17. https://doi.org/10.1093/jipm/pmaa013

Santos, R. F., Fraaije, B. A., Garrido, L. R., Monteiro-Vitorello, C. B., & Amorim, L. (2020). Multiple resistance of Plasmopara viticola to Qol and CAA fungicides in Brazil. Plant Pathology, 69(9), 1708-1720. https://doi.org/10.1111/ppa.13254

Santos, J. V. M., Valliyodan, B., Joshi, T., Khan, S. M., Liu, Y., Wang, J., Vuong, T. D., Oliveira, M. F., Marcelino-Guimarães, F. C., Xu, D., Nguyen, H. T., & Abdelnoor, R. V. (2016). Evaluation of genetic variation among Brazilian soybean cultivars through genome resequencing. BMC Genomics, 17. https://doi.org/10.1186/s12864-016-2431-x

Sarzi, J. S., Ludwig, J., Rabuske, J. E., Ferst, P. P., Malescki, J., & Warpechowski, L. (2019). Biocontrole da podridão vermelha da raiz e promoção de crescimento da soja. Nativa, 7(6), 629-635. http://dx.doi.org/10.31413/nativa.v7i6.6818

Schoffel, A., Barcelos, G., Orlandi, R. C., Koefender, J., Flores, E. F., Fogliatto, T., Golle, D. P., & Camera, J. N. (2023). Eficiência de fungicidas no controle da ferrugem asiática na soja. Peer Review, 5(14), 12-24. https://doi.org/10.53660/654.prw1802a

Song, L., Jiang, N., Wei, S., Lan, Z., & Pan, L. (2020). Isolation, screening, and identification of actinomycetes with antifungal and enzyme activity assays against Colletotrichum dematium of Sarcandra glabra. Mycobiology, 48(1), 37-43. https://doi.org/10.1080/12298093.2020.1716604

Staniak, M., Szpunar-Krok, E., & Kocira, A. (2023). Responses of soybean to selected abiotic stresses – photoperiod, temperature and water. Agriculture, 13(1), 146. https://doi.org/10.3390/agriculture13010146

Takahashi, J. P., Melhem, M. S. C. (2014). Uso de fungicidas na agricultura e resistência a antifúngicos na clínica médica. Boletim do Instituto Adolfo Lutz, 40-41. https://periodicos.saude.sp.gov.br/BIAL/article/download/39919/37619.

Toda, M., Beer, K. D., Kuivila, K. M., Chiller, T. M., & Jackson, B. R. (2021). Trends in agricultural triazole fungicide use in the United States, 1992-2016 and possible implications for antifungal-resistant fungi in human disease. Environmental Health Perspectives, 129(5). https://doi.org/10.1289/EHP7484

Toloi, M. N. V., Bonilla, S. H., Toloi, R. C., Silva, H. R. O., & Nääs, I. A. (2021). Development indicators and soybean production in Brazil. Agriculture, 11(11), 1164. https://doi.org/10.3390/agriculture11111164

Umburanas, R. C., Kawakami, J., Ainsworth, E. A., Favarin, J. A., Anderle, L. Z., Dourado-Neto, D., & Reichardt, K. (2022). Changes in soybean cultivars released over the past 50 years in southern Brazil. Scientific Reports, 12. https://doi.org/10.1038/s41598-021-04043-8

Verma, A., Shameem, N., Jatav, H. S., Sathyanarayana, E., Parray, J. A., Poczai, P., & Sayyerd, R. Z. (2022). Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.953836

Vielba-Fernández, A., Polonio, Á., Ruiz-Jiménez, L., Vicente, A., Pérez-García, A., & Fernández-Ortuño, D. (2020). Fungicide resistance in powdery mildew fungi. Microorganisms, 8(9), 1431. https://doi.org/10.3390/microorganisms8091431

Villani, S. M., Hulvey, J., Hily, J. M., & Cox, K. D. (2016). Overexpression of the CYP51A1 gene and repeated elements are associated with differential sensitivity to DMI fungicides in Venturia inaequalis. Phytopathology, 106, 562-571. https://doi.org/ 10.1094/PHYTO-10-15-0254-R

Yang, H., Tong, J., Lee, C. W., Ha, S., Eom, S. H., & Im, Y. J. (2015). Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nature Communications, 6, 6129. https://doi.org/10.1038/ncomms7129

Yin, Y., Miao, J., Shao, W., Liu, X., Zhao, Y., & Ma, Z. (2023). Fungicide resistance: Progress in understanding mechanism, monitoring, and management. Phytopathology, 113(4). https://doi.org/10.1094/PHYTO-10-22-0370-KD

Zanatta, R. P., & Wordell Filho, J. A. (2022). Efeito de intervalos de aplicação de fungicida na severidade de Phakopsora pachyrhizi na cultura da soja. Anais de Agronomia, 2(1), 106-124.

Wang, X-b., Liu, Z-x., Yang, C-y., Xu, r., Lu, W-g., Zhang, L-f., Wang, Q., Wei, S-h., Yang, C-m., Wang, H-c., Wang, R-z., Zhou, R., Chen, H-z., Chang, R-z., & Qiu, L-j. (2016). Stability of growth periods traits for soybean cultivars across multiple locations. Journal of Integrative Agriculture, 15(5), 963-972. https://doi.org/10.1016/S2095-3119(15)61152-2

Xiao, J., Chen, L., Pan, F., Deng, Y., Ding, C., Liao, M., Su, X., & Cao, H. (2020). Application method affects pesticide efficiency and effectiveness in wheat fields. Pest Management Science, 76(4), 1256-1264. https://doi.org/10.1002/ps.5635

Downloads

Published

2024-06-28

How to Cite

Santos, M. R. dos, & Andrade, C. L. L. de. (2024). Application of fungicides in the vegetative stage of soybean [Glycine max (L.) Merrill]: Mini-review. Cerrado: Agricultural and Biological Research, 1(3), 22–34. https://doi.org/10.14295/cerrado.v1i3.624