Toxic effect of metals (Al, Cd, Pb, Cr, and Fe) in soybean experiment (Glycine max L.) IPRO technology

Authors

DOI:

https://doi.org/10.14295/cerrado.v1i3.610

Keywords:

Heavy metals, Glycine genus, Aluminum, Cadmium, Lead, Iron, Toxicity

Abstract

Soil contamination by heavy metals is a serious environmental and agricultural problem. Among the toxic metals, aluminum, cadmium, lead, chromium, and iron represent production problems for agriculture around the world. This study aimed to evaluate the tolerance to Al, Cd, Pb, Cr, and Fe in the vegetative phase of the NEO 790 IPRO cultivar. Different concentrations of 0, 35, 85, and 125 mg L-1 were prepared and added to the soil. The parameters evaluated were percentage of germination, plant length, root length, aerial and root fresh mass, and aerial and root dry mass. Al and Cd presented negative results for some vegetative parameters, being toxic at the concentrations evaluated. Positive effects were obtained for Pb and Cr on other morphological parameters, and for the Fe element, it was possible to observe double suitability as a toxic element in high doses (> 85 mg L-1) and in doses lower than 85 mg L-1 effect stimulator. The NEO 790 IPRO cultivar proved to be resistant in most of the parameters evaluated at the applied doses.

References

Alves, J. C., Souza, A. P., Pôrto, M. L., Arruda, J. A., Júnior, U. A. T., Silva, G. B., Araújo, R. C., & Santos, D. (2008). Absorção e distribuição de chumbo em plantas de vetiver, jureminha e algaroba. Revista Brasileira de Ciência do Solo, 32(3), 1329-1336. https://doi.org/10.1590/S0100-06832008000300040

Baligar, V. C., Fageria, N. K., & Elrashidi, M. A. (1998). Toxicology and nutrient constraints on root growth. HortScience, 33(6), 960-965. https://www.cabidigitallibrary.org/doi/full/10.5555/19990703011

Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal Plants Physiology, 7(1), 21-34. https://doi.org/10.1590/S1677-04202005000100003

Bergmann, W. (1992). Nutritional disorders of plants: development, visual and analytical diagnosis. New York: Fischer, G., 741 p.

Bertoli, A. C., Carvalho, R., Cannata, M. G., Bastos, A. R. R., & Augusto, A. S. (2011). Toxidez do chumbo no teor e translocação de nutrientes em tomateiro. Biotemas, 24(4), 7-15. https://doi.org/10.5007/2175-7925.2011v24n4p7

Cataldo, D. A., Galand, T. R., & Wildung, R. E. (1983). Cadmium uptake kinetics in intact soybean plants. Plant Physiology, 73(3), 844-848. https://doi.org/10.1104/pp.73.3.844

Castilhos, D. D., Guadagnin, C. A., Silva, M. D., Leitzke, V. W., Ferrreira, L. H., & Nunes, M. C. (2001). Acúmulo de cromo e seus efeitos na fixação biológica de nitrogênio e absorção de nutrientes em soja. Revista Brasileira de Agrociência, 7(2), 121-124. https://periodicos.ufpel.edu.br/index.php/CAST/article/view/383

Chang, A. C., Hinesly, T. D., Bates, T. E., Poner, H. E., Dowdy, R. H., & Ryan, J. A. (1987). Effects of long term sludge application on accumulation of trace elements by crops. In: Page, A. L., Logan, T. J.,& Ryan, J. A. (Eds.). Land application of sludge: food chain implications. Lewis Publishers, Chelsea, cap.4, 53-66 p.

Codognotto, L. M., Santos, D. M. M., Leite, I. C., Marin, A., Madaleno, L. L., Kobori, N. N., & Banzatto, D. A. (2002). Efeito do alumínio nos teores de clorofilas de plântulas de feijão-mungo e labe-labe. Revista Ecossistema, 27(2), 27-39.

Cogo, M. R. M., Lopes, A. M., & Vielmo, P. G. (2020). Capacidade de absorção, distribuição e efeitos morfológicos causados por cádmio em plantas. Revista Multidisciplinar de Educação e Meio Ambiente, 1(1), 56. https://editoraime.com.br/revistas/index.php/rema/article/view/77

Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K.; Le Jean, M., Misson, J., Schikora, A., Czernic, P., & Mari, S. (2009). Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103(1), 1-11. https://doi.org/10.1093/aob/mcn207

Davis, R. D., Beckett, P. H. T., & Wollan, E. (1978). Critical levels of twenty potentially toxic elements in young spring barley. Plant and Soil, 449(2), 395-408. https://doi.org/10.1007/BF02149747

Echart, C. L., & Cavalli-Molina, S. (2001). Fitotoxicidade do alumínio: efeitos, mecanismo de tolerância e seu controle genético. Ciência Rural, 31(3), 531-541. https://doi.org/10.1590/S0103-84782001000300030

Eltrop, L., Brown, G., Joachim, O., & Brinkmann, K. (1991). Lead tolerance of Betula and Salix in the mining area of Mechernich/Germany. Plant Soil, 131, 275-285. https://doi.org/10.1007/BF00009459

Figliolia, A., Benedetti, A., Dell’Abate, M. T., Izza, C., & Indiati, R. (1992). Potential chromium bio-availability by Lactuca sativa grow on two soils amended with tannery leather residues. Fresenius Environmental Bulletin, 1(6), 406-410. https://www.cabidigitallibrary.org/doi/full/10.5555/19921973576

Grubinger, V. P., Gutenmann, H. W., Doss, G. J., Rutzke, M., & Lisk, D. J. (1994). Chromium in Swiss chard grown on soil amended with tannery meal fertilizer. Chemosphere, 28(4), 717-720. https://doi.org/10.1016/0045-6535(94)90223-2

Huffman, E. W. D., & Allaway, W. H. (1973). Growth of plants in solution culture containing low levels of chromium. Plant Physiology, 52(1), 72-75. https://doi.org/10.1104/pp.52.1.72

Hungria, M., Vargas, M. A. T., Suhet, A. R., & Peres, J. R. R. (1994). Fixação biológica do nitrogênio em soja. In: Araujo, R. S., & Hungria, M. (Ed.) Microorganismos de importância agrícola. Brasília: Embrapa-SP, I, cap. 2, 9-89 p.

Hassett, J. J. (1974). Capacity of selected Illinois soils to remove lead from aqueous solution. Communications in Soil Science and Plant Analysis, 5(6), 499-505. https://doi.org/10.1080/00103627409366528

Huang, J. W., & Cunningham, S. D. (1996). Lead phytoextraction: Species variation in lead uptake and translocation. New Phytologist, 134(1), 75-84. https://doi.org/10.1111/j.1469-8137.1996.tb01147.x

Ikhajiagbe, B., Ogwu, M. C., & Lato, N. F. (2021). Growth and yield responses of soybean (Glycine max [L.] Merr.) accessions after exposure to cadmium. Vegetos, 34, 107-118. https://doi.org/10.1007/s42535-021-00189-y

Jiang, F. Y., Chen, X., & Luo, A. C. (2009). Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake. Aquatic Ecology, 43, 879-890. https://doi.org/10.1007/s10452-009-9241-z

Júnior, A. C. G., Luchese, E. B., & Lenzi, E. (2000). Avaliação da fitodisponibilidade de Cádmio, Chumbo, Crômio, em soja cultivada em Latossolo vermelho escuro tratado com fertilizantes comerciais. Química Nova, 23(2), 173-177. https://doi.org/10.1590/S0100-40422000000200006

Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soil and plants. 3rd ed., Boca Raton: CRC Press, 331p

Kumar, N. P. B. A., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove of heavy metals from soil. Environmental Science & Technology, 29(5), 1232-1238.

Lagriffoul, A., Mocquot, B., Vangronsveld, J., & Mench, M. (1998). Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in Young maize plants (Zea mays L.). Plant and Soil, 200, 241-250. https://doi.org/10.1023/A:1004346905592

Li, G., Xu, W., Kronzucker, H. J., & Shi, W. (2015). Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis. Journal of Experimental Botany, 66(7), 2041-2054. https://doi.org/10.1093/jxb/erv005

Liang, Y., Zhu, Y. G., Xia, Y., & Li, Z. (2006). Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations. Annals of Applied Biology, 149(3), 305-312. https://doi.org/10.1111/j.1744-7348.2006.00095.x

Losi, M. E., Amrhein, C., Frankenberger, W. T. (1994). Environmental biochemistry of chromium. Reviews of Environmental Contamination and Toxicology, Chapter, 135, 91-121 p. https://doi.org/10.1007/978-1-4612-2656-7_3

Lux, A., Martinka, M., Vaculi’k, M., & White, P. J. (2010). Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62(1), 1-17. https://doi.org/10.1093/jxb/erq281

Marchiori Júnior, M., Melo, W. J., Bertipaglia, L. M. A., & Melo, G. M. P. (1999). Plantas de sorgo cultivadas sob aplicação de biossólido contaminado com doses crescentes de crômio. In: Congresso Latinoamericano de la Ciencia del Suelo, 14, Temuco, Universidade de la Frontera.

McBride, M. B. (1995). Toxic metal accumulation from agricultural use of sludge: Are USEPA regulations protective? Journal of Environmental Quality, 24(1), 5-18. https://doi.org/10.2134/jeq1995.00472425002400010002x

Mertz, W. E. (1969). Chromium occurence and function in biological systems. Physiology Reviews, 49(2),163-239. https://doi.org/10.1152/physrev.1969.49.2.163

Miguel, P. S. B., Gomes, F. T., Rocha, W. S. D., Martins, C. E., Carvalho, C. A., & Oliveira, A. V. (2010). Efeitos tóxicos do alumínio no crescimento das plantas: mecanismos de tolerância, sintomas, efeitos fisiológicos, bioquímicos e controles genéticos. CES – Revista, 24(1), 13-29. https://seer.uniacademia.edu.br/index.php/cesRevista/article/view/661

Miller, J. E., Hassett, J. J., & Koeppe, D. E. (1976). Uptake of Cadmium by soybeans as influenced by soil cation exchange capacity, pH, and available Phosphorus. Journal of Environmental Quality, 52, 157-160. https://doi.org/10.2134/jeq1976.00472425000500020009x

Moral, R., Pedreno, N., Gomez, I. (1995). Effects of chromium on the nutrient element content and morphology of tomato. Journal of Plant Nutrition, 18(4), 815-822. https://doi.org/10.1080/01904169509364940

Mortvedt, J. J. (2001). Adubos e adubação: Tecnologia e produção de fertilizantes com micronutrientes -presença de elementos tóxicos. In: Ferreira, M. E. (Org). Micronutrientes e elementos tóxicos na agricultura. Jaboticabal: CNPq/FAPESP/POTAFOS, 237-251 p.

Nava, I. A., Júnior, A. C. G., Nacke, H., Guerini, V. L., & Schwantes, D. (2011). Disponibilidade dos metais pesados tóxicos Cádmio, Chumbo e Cromo no solo e tecido foliar da soja adubada com diferentes fontes de NPK-Zn. Ciência e Agrotecnologia, 35(5), 884-892. https://doi.org/10.1590/S1413-70542011000500004

Oliveira, C., Sobrinho, N. M. B. A., Marques, V. S., & Mazur, N. (2005). Efeitos da aplicação do lodo de esgoto enriquecido com cádmio e zinco na cultura do arroz. Revista Brasileira de Ciência do Solo, 29(1), 109-116. https://doi.org/10.1590/S0100-06832005000100012

Paiva, H. P., Carvalho, J. G., & Siqueira, J. O. (2000). Efeito de Cd, Ni, Pb e Zn sobre mudas de cedro (Cedrela fissilis Vell.) e ipê-roxo (Tabebuia impetiginosa (Mart.) Standley) em solução nutritiva. Revista Árvore, 24, 369-378.

Pal, M., Horvath, E., Janda, T., Paldi, E., & Szalai, G. (2006). Physiological changes and defense mechanisms induced by cadmium stress in maize. Journal of Plant Nutrition and Soil Science, 169(2), 239-246. https://doi.org/10.1002/jpln.200520573

Peixoto, P. H. P., Pimenta, D. S., & Cambraia, J. (2007). Alterações morfológicas e acúmulo de compostos fenólicos em plantas de sorgo sob estresse de alumínio. Bragantia, 66(1), 17-25. https://doi.org/10.1590/S0006-87052007000100003

Pereira, M. P., Pereira, F. J., Rodrigues, L. C. A., Barbosa, S., & Castro, E. M. (2013). Fitotoxicidade do chumbo na germinação e crescimento inicial de alface em função da anatomia radicular e ciclo celular. Revista Agro@mbiente On-line, 7(1), 36-43. https://doi.org/10.18227/1982-8470ragro.v7i1.895

Poudel, S., Vennam, R. R., Shrestha, A., Reddy, K. R., Wijewardane, N. K., Reddy, K. N., & Bheemanahalli, R. (2023). Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-28354-0

Rangel, O. J. P., Silva, C. A., Bettiol, W., & Dynia, J. F. (2006). Efeito de aplicações de lodos de esgoto sobre os teores de metais pesados em folhas e grãos de milho. Revista Brasileira de Ciência do Solo, 30(3), 583-594. https://doi.org/10.1590/S0100-06832006000300018

Romeiro, S., Lagoa, A. M. M. A., Furlani, P. R., Abreu, C. D., & Pereira, B. F. F. (2007). Absorção de chumbo e potencial de fitorremediação de Canavalia ensiformis L. Bragantia, 66(2), 327-334. https://doi.org/10.1590/S0006-87052007000200017

Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1-24. https://doi.org/10.7831/ras.3.1

Ruley, A. T., Sharma, N. C., Sahi, S. V., Singh, S. R., & Sajwan, K. S. (2006). Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environmental Pollution, 144(1), 11-18. https://doi.org/10.1016/j.envpol.2006.01.016

Sahrawat, K. L. (2004). Managing iron toxicity in lowland rice : the role of tolerant genotypes and plant nutrients. Journal of Plant Nutrition, 1, 452-454. https://oar.icrisat.org/4880/

Salazar, M. J., Rodriguez, J. H., Nieto, G. L., & Pignata, M. L. (2012). Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. Journal of Hazardous Materials, 233-234, 244-253. https://doi.org/10.1016/j.jhazmat.2012.07.026

Santos, A. P., Fagan, E. B., Teixeira, W. F., Soares, L. H., Reis, M. R., & Corrêia, L. T. (2013). Influência de doses de cádmio na emergência e no crescimento do feijoeiro. Cerrado Agrociências, 4, 1-8. https://revistas.unipam.edu.br/index.php/cerradoagrociencias/article/view/4158

Silva, E., Santos, P. S., & Guilherme, M. F. S. (2015). Chumbo nas plantas: uma breve revisão sobre seus efeitos, mecanismos toxicológicos e remediação. Agrarian Academy, 2(03), 1-21.

Silva, V. L., Carvalho, R., Freitas, M. P., Tormena, C. F., & Melo, W. C. (2007a). Spectrometric and theoretical investigation of the structures of Cu and Pb/DTPA complexes. Structural Chemistry, 18, 605-609. https://doi.org/10.1007/s11224-007-9192-8

Silva, V. L., Carvalho, R., Freitas, M. P., Tormena, C. F., & Melo, W. C. (2007b). Structural determination of Zn and Cd-DTPA complexes: MS, infrared, 13C NMR and theoretical investigation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(5), 1197-1200. https://doi.org/10.1016/j.saa.2007.01.020

Silva, L. F. O., Sharma, P., Menezes Filho, A. C. P., Melo, A. F., & Ventura, M. V. A. (2024). Response of sunflower seeds (Helianthus annuus L.) to different, concentrations of metals and doses of gamma radiation (241Am). Cerrado: Agricultural and Biological Research, 1(1), 1-9. https://doi.org/10.14295/cerrado.v1i1.550

Sousa, V. F. O., & Santos, G. L. (2018). Elemento cromo na nutrição mineral de plantas. Revista da Universidade Vale do Rio Verde, 16(2), 1-7. http://periodicos.unincor.br/index.php/revistaunincor/article/view/4352/pdf_818#

Souza, L. H., Novais, R. F., Alvarez, V. H., & Villani, E. M. A. (2010). Efeito do pH do solo rizosférico e não rizosférico de plantas de soja inoculadas com Bradyrhizobium japonicum na absorção de boro, cobre, ferro, manganês e zinco. Revista Brasileira de Ciência do Solo, 34(5), 1641-1652. https://doi.org/10.1590/S0100-06832010000500017

Silveira, V. C., Oliveira, A. P., Sperotto, R. A., Espindola, L. S., Amaral, L., Dias, J. F., Cunha, J. B., & Fett, J. P. (2007). Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Brazilian Journal of Plant Physiology, 19(2), 127-139. https://doi.org/10.1590/S1677-04202007000200005

Stefanello, R., & Goergen, P. C. H. (2019). Toxicidade de alumínio na germinação de sementes de Cynara scolymus L. Cultura Agronômica, 28(1), 42-49. http://dx.doi.org/10.32929/2446-8355.2019v28n1p42-49

Steffens, J. C. (1990). The heavy metal-binding peptides of plants. Annual Review of Plant Biology, 41, 553-575. https://doi.org/10.1146/annurev.pp.41.060190.003005

Tavares, M. S., Sausen, D., Schorr, M. R. W., & Marques, A. C. R., (2020). Estresse por ferro nas plantas: uma revisão de literatura. Brazilian Journal of Development, 6(5), 28825-28835. https://doi.org/10.34117/bjdv6n5-361

Wang, Q-R., Liu, X-M., Cui, Y-S., Dong, Y-T., & Christie, P. (2002). Responses of legume and non-legume crop species to heavy metal in soils with multiple metal contamination. Journal of Environmental Science and Health: Part A, 37(4), 611-621. https://doi.org/10.1081/ESE-120003241

Wang, J., & Evangelou, V. P. (1994). Metal tolerance aspects of plant cell wall and vacuole. In: handbook of plant and crop physiology. Tucson, The University of Arizona, 325 p.

Warington, K. (1946). Molybdenum as a factor in the nutrition of lettuce. Annuals of Applied Biology, 33(3), 249-254. https://doi.org/10.1111/j.1744-7348.1946.tb06309.x

Willinghoefer, R. O., Arantes, E. M. C., Morais, L. K. O., Santos, J. M., Leite, M. T. M., Araújo, G. E. S., Braga, E. S., & Cantão, V. C. G. (2020). Toxicidade de Cádmio em diferentes cultivares de soja. Brazilian Journal of Development, 46202-46221. https://doi.org/10.34117/bjdv6n7-303

Wójcik, M., & Tukiendorf, A. (2014). Accumulation and tolerance of lead in two contrasting ecotypes of Dianthus carthusianorum. Phytochemistry, 100, 60-65. https://doi.org/10.1016/j.phytochem.2014.01.008

Wu, L. B., Shhadi, M. Y., Gregorio, G., Mattheus, E., Becker, M., & Frei, M. (2014). Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice, 7(1), 8. https://doi.org/10.1186/s12284-014-0008-3

Zhi, Y., Sun, T., Zhou, Q., & Leng, X. (2020). Screening os safe soybean cultivars for cadmium contaminated fields. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-69803-4

Downloads

Published

2024-06-20

How to Cite

Silva Neto, J. L. da, Sharma, P., Melo, A. F., Menezes Filho, A. C. P. de, & Ventura, M. V. A. (2024). Toxic effect of metals (Al, Cd, Pb, Cr, and Fe) in soybean experiment (Glycine max L.) IPRO technology. Cerrado: Agricultural and Biological Research, 1(3), 1–13. https://doi.org/10.14295/cerrado.v1i3.610