Effect Iron Oxide (Fe2O3) nanoparticles synthesis by Teucrium polium L. on Cryptococcus neformans isolated from environmental sources in Kirkuk city, Iraq

Authors

DOI:

https://doi.org/10.14295/cerrado.v1i3.576

Keywords:

Cryptococcus neformans, Teucrium appolines, Iron oxide, nanoparticles

Abstract

This study isolated 60 samples from various locations in Kirkuk, including areas with high numbers of pigeons, and birds, residential backyards where chicken breeding takes place, and chicken selling markets where positive samples for Cryptococcus neoformans were identified. Five antifungals were used in different concentrations (Ketoconazole, Griseofulvin, Fluconazole, Nystatin, Clotrimazole), (0.02 g/mL, 0.04 g/mL, and 0.06 g/mL) the sensitivity of the drug to the spread method against isolates of the Cryptococcus neformans. The results showed that the fungal isolates were sensitive to antifungals. This study showed that nystatin has a greater inhibitory ability and a broad spectrum of activity than other antifungals, while griseofulvin did not show any inhibitory ability. Iron oxide nanoparticles (Fe2O3 NPs) are produced by the Teucrium polium L. extract as a reducing agent. We used an X-ray diffraction analysis and an SEM to confirm if these nano-oxides were present. The antifungal properties of Fe2O3 NPs against Cryptococcus neformans were investigated by the well diffusion method. With the increase in concentration of (Fe2O3 NPs). The diameter of inhibition growth zones of the fungal strains became greater; the Cryptococcus neformans growth inhibition zone was 32. 6 ± 0.6 mm,  31.2 ± 0.6 mm, 26 ± 0.5 mm, 24. 4 ± 0.4 mm and 21 ± 0.3  mm and 17.1 ± 0.0 for concentrations 6 mg/mL, 5 mg/mL, 4 mg/mL, 3 mg/mL, 2 mg/mL and 1 mg/mL respectively. Thus, we can conclude that the concentration of the solution of nanoparticles and antifungals directly affects the ability to inhibit the growth of fungi.

References

Abid, M. A., Latif, L. A., Kadhim, D. A., & Aziz, W. J. (2021). Antimicrobial activity by diffusion method using iron oxide nanoparticles prepared from (Rose plant) extract with rust iron. In: Journal of Physics: Conference Series, IOP Publishing, 1879(3), 032068. https://doi.org/10.1088/1742-6596/1879/3/032068

Abod, H. A. (2017). The effect of silver nanoparticles prepared using Aspergillus niger in some pathogenic bacteria. Kirkuk Journal of Science, 12(1), 1-16. https://www.iasj.net/iasj/article/124850

Adetitun, D. O., Laba, S. A., Anibijuwon, I. I., & Ahmed, S. (2015). Sensitivity pattern of some antifungal drugs on fungi isolated from soil. Ilorin Journal of Science, 2(2), 317-323. https://iljs.org.ng/index.php/iljs/article/view/95

Batool, M. (2022). Mycosynthesis of zinc oxide and iron oxide NPs using extract of selected species of Ganoderma and evaluation of their antifungal activity (Doctoral dissertation, Quaid i Azam University, Islamabad).

Burange, P. J., Tawar, M. G., Bairagi, R. A., Malviya, V. R., Sahu, V. K., Shewatkar, S. N., & Mamurkar, R. R. (2021). Synthesis of silver nanoparticles by using Aloe vera and Thuja orientalis leaves extract and their biological activity: a comprehensive review. Bulletin of the National Research Centre, 45, 1-13. https://doi.org/10.1186/s42269-021-00639-2

Damasco, J. A., Ravi, S., Perez, J. D., Hagaman, D. E., & Melancon, M. P. (2020). Understanding nanoparticle toxicity to direct a safe-by-design approach in cancer nanomedicine. Nanomaterials, 10(11), 2186. https://doi.org/10.3390/nano10112186

Elhassan, R. M., Alsony, N. M., Othman, K. M., Izz-Aldin, D. T., Alhaj, T. A., Ali, A. A., Abashir, L. A., Ahmed, O. H., & Hassan, M. A. (2019). Computational vaccinology approach: Designing an efficient multi-epitope peptide vaccine against Cryptococcus neoformans var. grubii’s heat shock 70KDa protein. BioRxiv, 534008. https://doi.org/10.1101/534008

Eslami, H., Babaei, H., Mehrbani, S. P., Aghazadeh, M., Babaei, Z., & Nezhad, S. K. (2017). Evaluation of antifungal effect of grape seed extract (GSE) on Candida glabrata and Candida krusei: in vitro study. Biomedical Research India, 28(21), 9163-9170.

Gámez‐Espinosa, E., Barberia‐Roque, L., & Bellotti, N. (2020). Role of nanotechnology in the management of indoor fungi. Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment, 229-257. https://doi.org/10.1002/9781119671732.ch12

Harandi, F. N., Khorasani, A. C., Shojaosadati, S. A., & Hashemi-Najafabadi, S. (2022). Surface modification of electro spun wound dressing material by Fe2O3 nanoparticles incorporating Lactobacillus strains for enhanced antimicrobial and antibiofilm activity. Surfaces and Interfaces, 28, 101592. https://doi.org/10.1016/j.surfin.2021.101592

Huang, T., Li, X., Maier, M., O'Brien-Simpson, N. M., Heath, D. E., & O'Connor, A. J. (2023). Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomaterialia, 158, 56-79. https://doi.org/10.1016/j.actbio.2023.01.019

Kangogo, M., Boga, H., Wanyoike, W., & Bii, C. (2014). Isolation and characterization of Cryptococcus neoformans and Cryptococcus gattii from environmental sources in Nairobi, Kenya. East African Medical Journal, 91(8), 281-285. https://www.ajol.info/index.php/eamj/article/view/110503

Khan, M., Ahmed, J., Gul, A., Ikram, A., Lalani, F. K. (2018). Antifungal susceptibility testing of vulvovaginal Candida species among women attending antenatal clinic in tertiary care hospitals of Peshawar. Infection and Drug Resistance, 11, 447-56. https://www.tandfonline.com/doi/full/10.2147/IDR.S153116

Kwon-Chung, K. J., Boekhout, T., Fell, J. W., & Diaz, M. (2002). (1557) Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon, 51(4), 804-806. https://doi.org/10.2307/1555045

Liporagi Lopes, L. C., Korangath, P., dos Santos Jr, S. R., Gabrielson, K. L., Ivkov, R., & Casadevall, A. (2022). Bionized nanoferrite particles alter the course of experimental Cryptococcus neoformans pneumonia. Antimicrobial Agents and Chemotherapy, 66(4), e02399-21. https://doi.org/10.1128/aac.02399-21

Luengo, Y., Sot, B., & Salas, G. (2020). Combining Ag and γ-Fe2O3 properties to produce effective antibacterial nanocomposites. Colloids and Surfaces B: Biointerfaces, 194, 111178. https://doi.org/10.1016/j.colsurfb.2020.111178

Mi, G., Shi, D., Wang, M., & Webster, T. J. (2018). Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces. Advanced Healthcare Materials, 7(13), 1800103. https://doi.org/10.1002/adhm.201800103

Oh, K. S., & Hwang, S. M. (2005). Isolation and characterization of Cryptococcus neoformans from environmental sources in Busan. Mycobiology, 33(4), 188-193. https://www.tandfonline.com/doi/abs/10.4489/MYCO.2005.33.4.188

Pourmadadi, M., Rahmani, E., Shamsabadipour, A., Mahtabian, S., Ahmadi, M., Rahdar, A., & Díez-Pascual, A. M. (2022). Role of iron oxide (Fe2O3) nanocomposites in advanced biomedical applications: a state-of-the-art review. Nanomaterials, 12(21), 3873. https://doi.org/10.3390/nano12213873

Salih, A. I., Ismael, F. Y., & Ridha, S. M. A. (2017). Synthesis and Characterization of Copper Substituted Lithium Nano Ferrites by Sol-Gel Auto combustion. Kirkuk Journal of Science, University of kirkuk, 12(2), 195-216. https://doi.org/10.32894/kujss.2017.124955

Shakoor, N., Adeel, M., Nadeem, M., Aziz, M. A., Zain, M., Hussain, M., ... & Rui, Y. (2023). Exploring the Effects of Iron Nanoparticles on Plants: Growth, Phytotoxicity, and Defense Mechanisms. In: Nanomaterials and Nanocomposites Exposures to Plants: Response, Interaction, Phytotoxicity and Defense Mechanisms. Singapore: Springer Nature Singapore, 209-226 p.

Sheehan, D. J., Hitchcock, C. A., & Sibley, C. M. (1999). Current and emerging azole antifungal agents. Clinical Microbiology Reviews, 12(1), 40-79. https://doi.org/10.1128/cmr.12.1.40

Sibanda, T., & Okoh, A. I. (2007). The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. African Journal of Biotechnology, 6(25). https://www.ajol.info/index.php/ajb/article/view/58241

Sousa, F., Nascimento, C., Ferreira, D., Reis, S., & Costa, P. (2023). Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent. Advanced Drug Delivery Reviews, 199, 114969. https://doi.org/10.1016/j.addr.2023.114969

Stefkov, G., Karapandzova, M., Stefova, M., & Kulevanova, S. (2009). Seasonal variation of flavonoids in Teucrium polium L. (Lamiaceae). Macedonian Pharmaceutical Bulletin, 55(1-2), 33-40.

Downloads

Published

2024-06-23

How to Cite

Abbood, H. A., & Zainalabden, S. S. (2024). Effect Iron Oxide (Fe2O3) nanoparticles synthesis by Teucrium polium L. on Cryptococcus neformans isolated from environmental sources in Kirkuk city, Iraq. Cerrado: Agricultural and Biological Research, 1(3), 14–21. https://doi.org/10.14295/cerrado.v1i3.576