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Abstract

Several drugs, such as zatolmilast, orismilast, lotamilast, and GSK256066 (phosphodiesterase inhibitors) have
been used to treat chronic heart failure. However, some of these drugs can produce different secondary effects
such as arrhythmia, nausea, and vomiting. In the search for a new therapeutic alternative to treat chronic heart
failure, this study aimed to characterize the interaction of some amino derivatives (1-40) with phosphodiesterase
4D using the 3iak protein as a theoretical tool in the DockingServer program. Besides, zatolmilast, orismilast,
lotamilast, and GSK256066 were used as controls. The results showed differences in the interaction of amino
derivatives with the 3iak protein surface compared with zatolmilast, orismilast, lotamilast, and GSK256066.
Other data indicate that the inhibition constant for amino derivatives 7, 12, 15, 18, and 33 was lower compared
with the controls. All these data suggest that compounds 7, 12, 15, 18, and 33 could act as phosphodiesterase 4D
inhibitors. These data suggest that amino derivatives of phosphodiesterase 4D could be a good therapeutic
alternative to treat heart failure.
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Anélise das interagdes intramoleculares de quarenta derivados de aminas com a
fosfodiesterase 4D utilizando um modelo tedrico

Resumo

Vaérios farmacos, como zatolmilast, orismilast, lotamilast e GSK256066 (inibidores da fosfodiesterase), tém sido
utilizados no tratamento da insuficiéncia cardiaca cronica. No entanto, alguns desses medicamentos podem
produzir diferentes efeitos secundarios, como arritmia, nduseas e vomitos. Na busca por uma nova alternativa
terapéutica para o tratamento da insuficiéncia cardiaca cronica, este estudo teve como objetivo caracterizar a
interagdo de alguns derivados de aminas (1-40) com a fosfodiesterase 4D, utilizando a proteina 3iak como
ferramenta teorica no programa DockingServer. Além disso, zatolmilast, orismilast, lotamilast e GSK256066
foram utilizados como controles. Os resultados mostraram diferencas na interacdo dos derivados de aminas com
a superficie da proteina 3iak em comparacéo com zatolmilast, orismilast, lotamilast e GSK256066. Outros dados
indicam que a constante de inibicdo dos derivados de aminas 7, 12, 15, 18 e 33 foi menor quando comparada a
dos controles. Todos esses dados sugerem que os compostos 7, 12, 15, 18 e 33 podem atuar como inibidores da
fosfodiesterase 4D. Esses resultados indicam que derivados de aminas direcionados a fosfodiesterase 4D podem
representar uma boa alternativa terapéutica para o tratamento da insuficiéncia cardiaca.

Palavras-chave: derivados de aminas, insuficiéncia cardiaca, fosfodiesterase.

1. Introduction

Heart failure is a major problem of public health worldwide (Bragazzi et al., 2017; Khan et al., 2024; Lee et al.,
2024; Martin, 2024). This clinical pathology is associated with several risk factors, such as alcohol (Laonigro et
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al., 2009), smoking (Aune et al., 2019), diabetes (Ohkuma et al., 2019), lipid concentrations (Katsiki et al., 2016),
hypertension (Slivnick et al., 2019), coronary artery disease (Nelsen et al., 2024), and others. It is noteworthy
that several drugs, such as captopril (Paker et al., 1986), spironolactone (Huang et al., 2024), valsartan
(Maggioni et al., 2005), and levosimendan (Massarone et al., 2022) have been used to treat heart failure.
Although these therapies improve symptoms and outcomes in many patients, they do not fully reverse
maladaptive cardiac remodeling nor restore optimal cardiac function in all individuals.

An important intracellular signaling pathway in cardiomyocytes involves the second messenger cyclic adenosine
monophosphate (CAMP), which regulates contractility, calcium handling, and hypertrophic responses via protein
kinase A (PKA)-dependent mechanisms. Phosphodiesterase 4 (PDE4) enzymes, including the PDE4D isoform,
specifically hydrolyze cAMP, thereby shaping the spatial and temporal dynamics of cAMP-dependent signaling
in the heart. PDE4D is a key regulator of local cAMP pools within cardiomyocytes and is implicated in the
modulation of cardiac contractile function and pathological remodeling (Sherstnev et al., 2025).

Recent experimental evidence suggests that dysregulation of PDE4D expression and activity contributes to
adverse cardiac remodeling. For example, cardiac PDE4D upregulation is observed in failing hearts and in
experimental models of pathological stress, where its overexpression leads to oxidative stress, impaired
mitophagy, and cardiomyocyte hypertrophy through inhibition of CREB-SIRT1 signaling pathways (Fu et al.,
2025). These alterations indicate that sustained adrenergic stimulation and increased PDE4D may exacerbate
cardiac dysfunction by reducing beneficial cCAMP-PKA signaling and compromising cellular homeostasis (Fu et
al., 2025).

On the other hand, some phosphodiesterase inhibitors have been used to treat chronic heart failure; for example,
a study showed that milrinone (a phosphodiesterase 3 inhibitor) can improve cardiac contractility by increasing
intracellular levels of cyclic AMP in patients with chronic heart failure (Cuffe et al., 2002; Packer et al., 1991).
Other data indicate that amrinone (a phosphodiesterase 3 inhibitor) improves cardiac function in patients with
chronic heart failure (LeJemtel et al., 1980). Besides, a prospective study shows that long-term oral
administration of dipyridamole (a phosphodiesterase 3 inhibitor) improves cardiac function in patients with
chronic heart failure (Sanada et al., 2007).

Other reports indicate that pentoxifylline (a non-selective phosphodiesterase antagonist) may improve heart
function and reduce mortality in patients with chronic heart failure (Batchelder; Mayosi, 2005; Champion et al.,
2014). In addition, a study displays that udenafil (a phosphodiesterase 5 inhibitor) improves left ventricular
systolic/diastolic functions and exercise capacity in patients with chronic heart failure with reduced ejection
fraction (Kim et al., 2015). This data indicates that phosphodiesterase inhibitors have been used to treat chronic
heart failure; however, some of these drugs can produce some secondary effects such as arrhythmia (Ahmadieh
et al., 2018), nausea, and vomiting (Wilsmhurst et al., 1983).

Analyzing these data, this study aimed to determine the interaction of forty amino derivatives with the
phosphodiesterase 4 using the 3iak protein as a theoretical tool. Besides, some phosphodiesterase 4D inhibitors,
such as zatolmilast, orismilast, lotamilast, and GSK256066 drugs were used as controls in the DockingServer
program.

2. Materials and Methods
2.1 Chemical structure of amino derivatives

Amino derivatives (Figures 1 and 2; Tables 1 and 2) were used to evaluate their coupling with the
phosphodiesterase 4D surface as follows:
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Figure 1. Chemical structure of amino derivatives (1-21). Source: https://pubchem.ncbi.nlm.nih.gov

Table 1. Name of amino derivatives (1-21).

1) 11) 1-Phenyl-4-p-tolyl-1H-pyrazol-5-amine

3-(1H-indazol-5-yl)-N-propylimidazo[1,2-b]pyri-dazin-6-amine
2) 3,4-Dihidroxi-L-fenilalanina

12) 1-phenyl-N-(1-phenylethyl)ethanamine

13) 1H-Pyrrol-1-amine

14) N-Nitrilotriethylamine

15) 2-Cycloheptyl-ethylamine

16) 2-ethyl-N,N-bis(2-ethylhexyl)hexan-1-amine

3) 1,3-benzothiazole-2,6-diamine

4) (2-Methylbutyl)amine

5) 1,4-Benzodioxan-6-amine

6) 1,5-Naphthyridin-3-amine

7) 1-(4-Bromophenyl)-4-phenyl-1H-pyrazol-5-amine

17) 2-cyclopropyl ethylamine

18) 2-Cyclooctyl-ethylamine
8) 1-(4-chlorobenzyl)-3-phenyl-1H-pyrazol-5-amine 19) 2-methoxy-N-(2-methoxyethyl)ethanamine
9) 1-(4-Fluorophenyl)-4-phenyl-1H-pyrazol-5-amine 20) 2-methylbut-3-yn-2-amine
10) 1-Cyclopropyl-propylamine 21) 2-phenyl-1,3-benzoxazol-5-amine

19



Brazilian Journal of Science, 5(3), 17-30, 2026. ISSN: 2764-3417

Source: Authors, 2025.
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Figure 2. Chemical structure of amino derivatives (22-40). Source: https://pubchem.ncbhi.nim.nih.gov

Table 2. Name of amino derivatives (22-40).

22) 2-Phenyl-1-benzofuran-5-amine 32) 4-(4-Bromophenyl)-1-phenyl-1H-pyrazol-5-amine
23) 3,5-Diiodo-pyridin-4-ylamine 33) 4-Phenyl-1-p-tolyl-1H-pyrazol-5-amine
24) 34) 4-bromo-N-(4-bromophenyl)aniline

3-((2-methylbenzyl)thio)-5-phenyl-4H-1,2,4-tri-azol-4-amine
25) 3-amino-l-(2-azatricyc|0[10.4.0.04’9]
hexadeca-1(16),4,6,8,12,14-hexaen-10-yn-2-yl)propan-1-one

35) 4-Phenylisoxazol-5-amine
36) 5-(4-Trifluoromethyl-phenyl)-2H-pyrazol-3-ylamine

37) 5-Methoxy-2-(p-(2-(1-pyrrolidinyl)ethoxy)ani-lino)
26) 3-Aminoimidazo[1,2-a]pyridine

27) 3-Buten-1-amine

benzothiazole

38) 5-Phenylisoxazol-3-amine
28) 3-Butoxy-phenylamine

29) 3-Phenyl-1H-indazol-5-amine

39) 7-chloro-5-phenyl-3H-1,4-benzodiazepin-2-amine
40) Benzooxazol-6-ylamine
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30) 3-tert-Butyl-1-phenyl-1H-pyrazol-5-amine
31) 4,5-Dimethoxypyridin-3-amine

Source: Authors, 2025.

2.2 Protein-ligand

The interaction of amino derivatives (1-40) with phosphodiesterase 4D was determined using 3iak protein
(https://doi.org/10.2210/pdb31AK/pdb) as a theoretical tool. In addition, zatolmilast, orismilast, lotamilast, and
GSK256066 were used as controls in a DockingServer software (https://www.dockingserver.com/web).

2.3 Pharmacokinetic parameters

Pharmacokinetic data for amino derivatives (7, 12, 15, 18, and 33) were determined using the SwissADME
software (Prasetyawan al., 2025).

2.4 Toxicology analysis

Toxicology degree for a min o derivatives (7, 12, 15, 18, and 33) was determined using the Gussar software
(Bushueva; Parchenko, 2024).

3. Results
3.1 Ligand-protein complex

Table 3 shows the interaction of amino derivatives (1-40) and the controls (zatolmilast, orismilast, lotamilast,
and GSK256066) with the 3iak protein surface.

Table 3. Coupling of amino derivatives (1-40), zatolmilast, orismilast, lotamilast, and GSK256066 with the
3iak protein surface.

Compound Aminoacid residues

Zatolmilast ~ Tyriso; Hisieo; HiSooa; Seraos; LeUazo; Gluzso; ASNazi; Tyraze; Trpssz; Thrass; Ilesss; Phesso;
Glnseo; Phesr

Orismilast Tyrise; HiSie0; HiS204; Serags; Metors; Leusio; ASNszn; 1lesss; Phesao; Prosss; Phesr,
Lotamilast ~ Tyriso; HiSie0; Meto73; ASpats; Seraos; 11esss; Phesso; Metasz;  Phesro; Tyrars
GSK256066 Mety7s; Hisoze; Prosss; Metss7;  Phesrs; Tyrszs; lles7s

1 Tyrise; Hisieo; Metars; Aspais; Leusio; 1lesss; Metasz; Glnsgg;  Phear; lears

2 Tyrise; HiSie0; ASpP201;  Gluazo; Metars; ASpais; Leusio; lesss

3 Tyrise; Hiseo; ASNzz1; Tyraze; Thrass; llesss; Glnseo; Phesr:

4 Hisieo; HiS1ea; ASpP201;  HiSz04; Gluaso; Hisass; Thraza; Aspaas

5 Tyris the; HiS1e4; ASPais; LeUsio; ASNzo1; Prosoz; Tyrage; llesss; Glnsss; Phesr,

6 Tyrise; Leusio; ASNzar; Proszz; Tyraze; Trpasz; Thrass; llesss; Glnsss;  Phesrz

7 Tyrise; Hiseo; Hisea; Hiszoo; Aspao1; Gluzse; Hiszss; Thraze; Metors; Aspais; LeUsig; ASNazi;
lleszs; Trpssz; Thrass; llesss; Phesy:

8 Tyrise; Metors; Leusig; ASNazi; TYrase; Hesss; Phesso; Metasz; Glnsese; Phesro; Hesss
Tyrise; Hiseo; Hisiea; ASpao1; Gluzso; Thraze; Aspass; LeuUsie; Asnaas; lleszs; Phesr,

10 Hisieo; Hisiea; Hisaoo; Asp2o1; Gluzzo; Hiszss; Thrare; Aspass

11 Tyrise; Hisieo; Metozs; ASpais; LeUsio; ASNzor; Proasz; Tyraze; Thrass; llesss; Phesso; Glnseo;
Phes7,

12 Tyrise; Hiseo; Hisiea; ASP2o1; ASPaos; Hiszo4; LeUazze; Gluzso; Thrazi; Metars; Aspass; Leusio;
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Ilesss

13 Tyrise; ASNsa1; Proszs; Tyraze; Trpssz; Thrass; llesss; GInsge; Phesr,

14 Hisieo; Hisiea; His200; ASp2o1; Hisz04;  LeUzzo; Gluzzo; Hiszas; Thraze; Metara; Aspais; Leusig

15 Tyrise; Hisieo; Hisies; Hisz00; ASpzo1; ASpais;  LeUsio; Ilesss Phesz,

16 Tyrise; HiSie0; HiS204; Serags; LeUazo; Metors; ASpsis; Phesso; Metssz; Phesr,

17 Hisie0; HiS1e4; HiS200; ASP201; Hisz04; Gluzso; Thraza; Aspais

18 Tyrise; Hisieo; Hisies; Hisz00; ASpzo1; Metars; Aspais; LeUsis; llesss; Phesr.

19 Tyrise; HiSie0; HiS204; ASP201; Gluzso; Metors; Aspais; Leusig

20 Hisie0; HiS1e4; HiS200; ASP201; Gluzso; HiSzaz; Thrazi; Metors; Aspais

21 Tyrise; AsSNsa1; TYrazo; Trpasz; Thrass; Ilesss; Phesao;; Metsso; Glnses; Phesz,

22 Tyrise; HiSie0; Metozs; ASpais; LeUsio; ASNza1; Prosas; Tyraze; Thrass; Hlesss; Glnses; Phess,

23 Tyrise; ASNaz1; TYraoe; Thrass; leass; Glnsso; Phesss

24 Tyrise; Hisieo; Aspzoi; Gluzso; Metarzs; Aspais; LeUsio; ASNzar; Prosae; Tyraze; llesss; Glnaeo;
Phesz,

25 Tyrise; HiS1e0; HiS164; HiS200; ASPao1; Metors; ASpais; LeUsio; AsNaos; llesss; Phesso; Phesr,

26 Tyrise; ASNaz1; Hesss; Phesso; Glnsso; Phesrs

27 Hisieo; Hisiea; Hisz00; ASp2o1; Gluzzo; Hiszas; Thraza; Aspais

28 Tyrise; HiS1e0; Metozs; ASpais; LeUsio; ASNza1; TYraze; Trpase; Thrass; Hesss; Glnssg; Phesr,

29 Tyrise; ASPais; LeUsig; ASNaz; Pros; TYraze; Thraas; 1lesss; Phesso; Glnase; Phesr:

30 Tyrise; Hisieo; Metzrs; Aspais; LeUsio; AsNzai; ASNzar, Prosze; Tyraze, Thrass; llesss; Phesso;
Glngeo; Phesr,

31 Tyrise; ASnaor; lleass; Glnsge; Phesr,

32 Tyrise; HiSiso; HiSiea; Metors; Aspais; LeUsig; ASNaoi; Prosss; Tyraze; Thrass; llesss; Glnsso;
Phesz,

33 Tyrise; Hisieo; Hisiea; His200; Aspao1; Gluzso; Hiszso; Thrazs; Metara; Aspais; LeUsis; Asnaz;
Ilesss; Pheszz

34 Tyrise; Hisieo; HiS164; ASP201; ASPais; LeUsig; ASNza1; TYraze;  Thrass; lesss; Glnase; Phesy:

35 Tyrise; ASNa21; Prossg; Tyrazg;  Thrass; 1lesss; Phesso; Metss; Glnaso; Phesrs

36 Tyrise; Hisieo; Hisiea; Metzrs; Aspais; ASNzzi; Prosae; Tyraze; Trpssz; Thrass; lesss; Glnae;
Phesz,

37 Tyrise; Metozs; ASNsai; Tyraze;  Thrass; Hesss; Metas; Glnzso; Phear,

38 Tyrise; LeUsio; ASNzor; TYraze;  Trpasz; Thrass; lesss; Glnaso; Phesr:

39 Tyrise; Hisaeo; Hisies; Hisz00; ASpzo1; Seraos; Metars; Aspais; Phezao; Phesrz

40 Tyrise; AsPsis; LeUsio; ASNazn; Pross; Tyrae;, Thrass; lesss; Glngse; Phesr.

Source: Authors, 2025.

3.2 Thermodynamic parameters

Table 4 shows the energy values and inhibition constant (Ki) for amino derivatives (1-40), zatolmilast, orismilast,
lotamilast, and GSK2560 with the 3iak protein surface. The results showed that inhibition constants for
compounds 7, 12, 15, 18, and 33 were lower compared with the controls.

Table 4. Thermodynamic parameters involved in the coupling of amino derivatives (1-40), zatolmilast, orismilast,
lotamilast, and GSK2560 with the 3iak protein surface.

Compound Est. Free  Est. Inhibitio  vdW + Hbond +  Electrostati  Total Intermol  Interact.
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Energy n Constant desolv. Energy ¢ Energy ecEnergy Surface
of (Ki)
Binding

Zatolmilast -8.72 11.80 -9.41 0.85 -8.57 968.75
Orismilast -7.46 3.43 -8.59 -0.05 -8.64 987.69
Lotamilas -6.51 17.02 -8.36 -0.14 -8.50 1136.68
GSK2560 -7.20 5.25 -7.28 0.00 -7.29 817.85
1 -6.88 9.02 -6.91 -0.88 -7.79 735.06
2 -5.06 195.71 -4.01 -1.69 -5.71 524.49
3 -6.70 66.12 -5.93 -0.17 -6.00 479.27
4 -6.72 11.90 -3.84 -3.76 -7.61 329.27
5 -4.81 297.62 -5.06 -0.05 -5.11 417.57
6 -5.30 130.81 -5.53 -0.06 -5.60 406.12
7 -8.08 1.25 -8.68 -0.34 -9.02 639.16
8 -6.59 14.85 -7.77 -0.03 -7.80 704.02
9 -6.79 10.45 -1.77 -0.21 -7.98 665.01
10 -6.83 9.79 -3.96 -3.80 -7.76 354.28
1 -6.66 13.15 -7.69 -0.01 -7.70 747.22
12 -7.98 1.42 -6.47 -2.58 -9.05 680.18
13 -3.51 2.66 -3.73 -0.08 -3.81 285.77
14 -9.00 252.84 -3.61 -8.64 -12.25 486.79
15 -7.60 2.71 -5.00 -3.51 -8.50 479.34
16 -4.60 426.94 -1.74 -0.79 -8.54 1093.73
17 -6.26 25.90 -3.40 -3.75 -7.15 334.30
18 -7.87 1.70 -5.15 -3.62 -8.76 555.09
19 -6.28 24.96 -3.26 -2.73 -5.99 443.12
20 -6.79 10.60 -3.63 -3.76 -7.39 328.92
21 -6.28 24.92 -6.87 0.00 -6.87 538.38
22 -7.22 5.10 -7.65 -0.17 -7.82 579.29
23 -4.68 368.11 -4.94 -0.04 -4.98 347.56
24 -7.15 5.70 -8.55 -0.02 -8.57 757.61
25 -10.02 45.05 -7.85 -3.07 -10.92 729.18
26 -4.72 346.21 -4.91 -0.11 -5.02 430.20
27 -6.23 27.27 -3.26 -3.83 -7.09 310.56
28 -4.74 338.00 -6.10 -0.05 -6.15 528.34
29 -6.82 10.03 -7.34 -0.07 -7.41 578.75
30 -7.25 481 -8.04 -0.12 -8.16 616.87
31 -4.45 544.89 -4.74 -0.06 -4.79 478.73
32 -7.33 4.27 -8.28 -0.04 -8.32 613.43
33 -7.46 3.40 -8.23 -0.18 -8.40 688.75
34 -6.18 29.48 -6.83 0.04 -6.79 555.62
35 -5.61 76.64 -6.17 -0.03 -6.20 453.85
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36 -6.77 10.91
37 -6.95 8.11
38 -6.08 34.72
39 -8.95 275.77
40 -4.92 246.11

-7.54 -0.13
-6.94 -0.73
-6.57 -0.11
-6.63 -3.08
-5.13 -0.09

-7.67 541.44
-7.66 822.89
-6.58 474.89
-9.72 753.64
-5.22 394.35

Source: Authors, 2025.

3.3 Bond type analysis

Figure 3 and Table 5 show different types of bonds involved in the coupling of amino derivatives 7, 12, 15, 18,

and 33 with the 3iak protein surface.
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Figure 3. Aminoacid residues involved in the interaction of amino derivatives (7, 12, 15, 18, and 33) with the

3iak protein surface. Visualized with the DockingServer program. Source: Authors, 2025.

Table 5. Type of bonds involved in the coupling of amino derivatives (7, 12, 15, 18, and 33) with the 3iak protein

surface.
Comp. Hydrogen bond Halogen-bond Polar bond Hydrophobic bond
7 Hisieo; Hisiea; ASp2o1;  Tyrise; Asnazs  Hisaoo Hiszss; Metzrs; Leusio; 1esss
Aspsis
12 Metzz3; ASpais Tyrise; HiSe0; LeUzog; Leusio;
llesss
15 Hisie4; ASp2o1; ASpais Hisieo; His200 Tyrise; Leusis; Ilesss; Phesr,
18 Aspzo1;  Aspais Hisieo; Hises; Hiszoo  Leusio; Metara; llesss; Phesr,
33 Hisieo; Hisiea; ASp2os; Tyrise; Hiszoo Hisas; Leusio; Metars; 1lesss,

Aspaig

Phesr,

Source: Authors, 2025.

24



Brazilian Journal of Science, 5(3), 17-30, 2026. ISSN: 2764-3417

3.4 Pharmacokinetics evaluation

The pharmacokinetic values for amino derivatives 7, 12, 15, 18, and 33 were determined using the SwissADME
program. Table 6 displayed that amino derivatives have different affinity by Cyps involved in this study.

Table 6. Pharmacokinetic parameters analysis for amino derivatives 7, 12, 15, 18, and 33.

Compound A B C D E F G H |
7 High Yes No Yes Yes Yes Yes No 3.42
12 High Yes Yes No No No Yes No 3.56
15 High No No No No No No No 2.36
18 High Yes No No No No No No 2.69
33 High Yes No Yes Yes No Yes Yes 3.12

Note: A = GI absorption; B = BBB permeant; C = P-GP substrate; D = CYP1A2 inhibitor; E = CYP2C19
inhibitor; F = CYP2C9 inhibitor; G = CYP2D6 inhibitor; H = CYP3A4 inhibitor; 1 = Consensus Log PO/W.
Source: Authors, 2025.

Other data shown in Table 7 indicate that the toxicity degree for compound 7 is associated with a higher dose
compared to compounds 12, 15, 18, and 33.

Table 7. Toxicity analysis produced by amino derivatives 7, 12, 15, 18, 33, and the controls (zatolmilast,
orismilast, lotamilast, and GSK2560) was determined using the Gussar program.

Compound Rat IP LD50 Rat IV LD50 Rat Oral LD50 Rat SC LD50
(mg/kg) (mg/kg) (mg/kg) (mg/kg)
Zatolmilast 345.30 145.70 166.50 311.50
Orismilast 910.50 89.80 746.20 635.20
Lotamilast 690.20 102.80 1669.00 4221.00
GSK2560 946.00 253.00 456.80 835.40
7 605.60 201.10 962.10 1339.00
12 298.50 51.51 1438.00 768.70
15 186.30 59.43 727.20 336.20
18 199.70 64.43 897.80 443.50
33 406.20 122.80 859.10 574.50

Source: Authors, 2025.

4. Discussion

For several years, there has been great interest in the biological activity produced by some amino derivatives
(Akama et al., 1996; Khalifa, 2018; Liuy et al., 1996; Saleh et al., 2024; Yan et al., 2022). There are studies that
have shown that some amino derivatives can act as phosphodiesterase inhibitors. (Boswell-Smith et al., 2006;
Walker et al., 1983). Analyzing these data, in this study, the interaction of forty amino acid derivatives with
phosphodiesterase 4D for their possible use to treat cancer cells using a theoretical model.

In the literature, there are several methods to determine the coupling of different drugs with some biomolecules
(Harren et al., 2024; Lu et al., 2024; Qiao et al., 2024), such as Gromos (Riniker et al., 2011), HarmonyDOCK
(Plewczynski et al., 2014), DockingApp (Di Musio et al., 2017), Prodock (Trosset; Scheraga, 1999), and
DockingServer software (Figueroa-Valverde et al., 2024). In this study, the coupling of forty amino derivatives
with phosphodiesterase 4D was determined using the 3iak protein as a theoretical tool. Besides, some drugs such
as zatolmilast, orismilast, lotamilast, and GSK2560 are used as controls in the DockingServer program. The
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results showed different types of amino acid residues involved in the interaction of amino derivatives with the
3iak protein surface compared with the controls; these results could be due to differences in the chemical
structure of each compound.

On the other hand, the energy levels for amino derivatives (1-40) were different compared with the controls.
Besides, the inhibition constant for amino derivatives 7, 12, 15, 18, and 33 was lower compared with the controls.
This phenomenon may be due to the different types of bonds involved in the coupling of 7, 12, 15, 18, and 33
with the 3iak protein surface. In this way, Figure 2 and Table 4 showed that His164 may interact with the
compounds 7, 12, 15, 18, and 33 via a hydrogen bond; this phenomenon could result in higher affinity by the
3iak protein surface.

For several years, different pharmacokinetic models have been used to determine some properties involved in the
biological activity of drugs, such as PKQuest (Levit, 2002), PharmPK (Ishaku et al., 2020), SwissADME (Sicak,
2021), and others. In this study, some pharmacokinetic parameters for compounds 7, 12, 15, 18, and 33 were
determined using the SwissSADME program. The results showed that amino derivatives 7, 12, 15, 18, and 33 may
have higher absorption. Besides, the metabolism of compounds 12, 15, 18, and 33 involves different Cyps (P450
family). This phenomenon may be due to differences in the chemical structure or to the different lipophilicity
degree of each compound.

There are several methods to predict the toxicity degree of different drugs, such as ToxCast (Dix et al., 2007),
Toxll (Klopman; Rosenkranz, 1995), GENE-TOX (Waters; Auletta, 1995), Gussar (Askerova, 2023), and others.
Analyzing these data, in this study theoretical toxicity of amino derivatives 7, 12, 15, 18, and 33 was determined
using the GUSAR program to compare the results with the controls. The data indicated that the toxicity degree
may depend on the dose administered for amino derivatives through different administration routes.

5. Conclusions

In this study, the interaction of amino derivatives (1-40) with phosphosterase 4D using the 3iak protein,
zatolmilast, orismilast, lotamilast, and GSK2560 as theoretical tools in the DockingServer program. The results
displayed that compounds 7, 12, 15, 18, and 33 may interact with different types of amino acids involved in the
3iak protein surface. Besides, other data showed that Ki values for compounds 7, 12, 15, 18, and 33 were lower
compared with zatolmilast, orismilast, lotamilast, and GSK2560. This data suggests that compounds 7, 12, 15,
18, and 33 may act as phosphodiesterase 4D inhibitors, which could be a good therapeutic alternative for the
treatment of heart failure.
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