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Abstract 

Alzheimer's disease is the most prevalent cause of dementia, accounting for more than seventy per cent of all the 

reported cases. Among the various treatment strategies, inhibiting the action of acetylcholinesterase that breaks 

down the neurotransmitter acetylcholine is the most common. In this report, thirty-eight phenolic compounds 

were retrieved from the PubChem database and screened in silico against acetylcholinesterase. Non-covalent 

molecular docking, molecular mechanics-generalized born surface area (MM-GBSA), and molecular dynamics 

(MD) were used to predict their binding mode, affinity, free energy, and the stability of the protein-ligand 

complex. These were followed by drug-likeness screening and a rigorous prediction of their absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) parameters. Myricetin (-13.9 kcal/mol) was predicted 

to have the highest binding affinity among the phenolics, though lower than the bound donepezil (-16.3 

kcal/mol). To increase the binding affinity of myricetin, it was modified via a Schiff base formation, which gave 

the hydrazine B-1 a binding affinity of -17.7 kcal/mol, higher than that of donepezil. The molecular dynamics 

simulation showed that the modified ligands have better stability than myricetin. The ADMET and drug-likeness 

studies showed that the top four phenolics and myricetin analogue derivatives could be further developed as 

potential drug candidates. 

Keywords: acetylcholinesterase, ADMET modeling, Alzheimer’s disease, molecular docking, molecular 

dynamics. 

Potencial inibitório da acetilcolinesterase de fenólicos de origem vegetal no 

tratamento da doença de Alzheimer: Uma abordagem in silico 

Resumo 

A doença de Alzheimer é a causa mais prevalente de demência, correspondendo a mais de setenta por cento de 

todos os casos relatados. Dentre as diversas estratégias terapêuticas, a inibição da ação da acetilcolinesterase, 

enzima responsável pela degradação do neurotransmissor acetilcolina, é a mais comum. Neste estudo, trinta e 

oito compostos fenólicos foram obtidos do banco de dados PubChem e avaliados in silico contra a 

acetilcolinesterase. Utilizaram-se técnicas de docking molecular não covalente, mecânica molecular com área 

superficial generalizada de Born (MM-GBSA) e dinâmica molecular (MD) para prever o modo de ligação, a 

afinidade, a energia livre e a estabilidade do complexo proteína-ligante. Em seguida, foram aplicadas análises de 
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perfil de fármaco (drug-likeness) e uma rigorosa predição dos parâmetros de absorção, distribuição, metabolismo, 

excreção e toxicidade (ADMET). A miricetina (-13,9 kcal/mol) foi prevista como o composto com maior 

afinidade de ligação entre os fenólicos, embora inferior ao donepezil ligado (-16,3 kcal/mol). Para aumentar a 

afinidade de ligação da miricetina, esta foi modificada por meio da formação de uma base de Schiff, originando a 

hidrazina B-1, com afinidade de ligação de -17,7 kcal/mol, superior à do donepezil. A simulação de dinâmica 

molecular mostrou que os ligantes modificados apresentaram maior estabilidade em comparação com a 

miricetina. Os estudos de ADMET e perfil de fármaco indicaram que os quatro principais fenólicos e os 

derivados análogos da miricetina podem ser futuramente desenvolvidos como potenciais candidatos a fármacos. 

Palavras-chave: acetilcolinesterase, modelagem ADMET, doença de Alzheimer, docking molecular, dinâmica 

molecular.  

 

1. Introduction 

Dementia is an age-related condition that affects the cognitive brain processes of memory, language, perception, 

and cognition, making it challenging to sustain everyday tasks (Jabir; Rehman et al., 2021). Alzheimer's disease 

(AD) is one of the most well-researched forms of dementia. In the USA, AD is the most prevalent form of 

dementia, accounting for 60-80 per cent of all cases (“2024 Alzheimer’s Disease Facts and Figures,” 2024). 

Alzheimer's disease is projected to affect 12.7 million people aged 65 years and older by 2050 (Association, 

2022; Jabir; Shakil et al., 2021).  

Protein misfolding and aggregation, oxidative stress, mitochondrial abnormalities, and neuroinflammatory 

processes are all hallmarks of Alzheimer's disease (AD) at the molecular level (Oliyaei et al., 2023). 

Unfortunately, no definite consensus on the causation of Alzheimer's disease exists, although various hypotheses 

have been proposed. The most prevalent of them is the cholinergic hypothesis, which postulates that a decrease 

in the amount of the neurotransmitter acetylcholine (ACh) is associated with cognitive decline. In another 

amyloid hypothesis, AD has been linked with the formation of β-amyloid (Aβ) plaques in the brain (Oh et al., 

2022; van Greunen et al., 2017), which is a distinctive feature of AD.  

ACh levels in the brain are regulated by the enzyme acetylcholinesterase (AChE, EC number 3.1.1.7), which 

catalyzes the breakdown of the neurotransmitter ACh. Butyrylcholinesterase (BuChE) also degrades ACh more 

slowly and to a lesser level (Oh et al., 2022; van Greunen et al., 2017). Interestingly, AChE has also been 

reported to bind specifically to Aβ and play a crucial role in Aβ plaque formation (van Greunen, Johan van der 

Westhuizen, et al., 2019).  

A single molecule of AChE breaks down over 20,000 molecules of ACh in one second. The enzyme uses three 

crucial amino acid residues (glutamine, histidine, and serine) known as the catalytic triad at its 20 Å deep gorge. 

The hydrophobic aromatic residues along the gorge propel ACh into the reaction orientation where the oxygen 

atom on serine binds to the ACh ester's carbonyl carbon. The loosely-bonded hydrogen atom to the serine gets 

transferred to the AChE oxygen atom, breaking its intramolecular bond, and thereby releasing choline. Serine 

containing the remaining acetate gets protonated by a water molecule, leading to the formation of a new bond 

between the acetate and the oxygen of the water molecule, releasing acetate in the process.  

The catalytic triad is restored to its original form, ready to break more Ach (Islam et al., 2019). Therefore, by 

regulating the clearance of ACh, inhibition of AChE has always been an excellent therapeutic approach. The US 

Food and Drug Administration (US FDA) has approved three AChE inhibitors for Alzheimer's disease: donepezil, 

rivastigmine, and galantamine (Tamilselvan et al., 2020). Tacrine was authorized by the FDA but has 

subsequently been withdrawn owing to hepatotoxicity concerns (Dileep et al., 2022). Despite the numerous 

treatment options for Alzheimer's disease, interest in plant-based herbal medicine is growing these days due to 

the lack of complete efficacy and side effects of the approved drugs (Bhandari et al., 2021). 

Traditional medicine has been known for using plant-based extracts to treat various diseases, including skin 

infections, candidiasis, dyspepsia, neurodegenerative disease, cough, and fever (Abuzaid et al., 2020). However, 

as technology and drug discovery have advanced in the last century, this practice has begun to receive renewed 

attention (Efferth et al., 2019). The Food and Drug Administration has approved about 25% of new medications, 

including phytochemicals (Bai et al., 2024; Patridge et al., 2016). Currently, more than USD 65 billion is made 

annually from the sale of pharmaceuticals derived from plants, with approximately 80% of antibacterial, 

cardiovascular, immunosuppressive, and anticancer medications being derived from plants (Ramírez-Rendon et 

al., 2022).   

Nevertheless, 6% and 15% of the estimated 450,000 plant species worldwide have undergone pharmacological 
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and phytochemical screening, respectively (Khan et al., 2023). Thus, many bioactive compounds may have 

strong physiological effects on several illnesses. For example, antioxidant-rich plants and foods may help reduce 

Alzheimer's disease by preventing or neutralizing the harmful effects of free radicals (Pritam et al., 2022). An 

extensive study on the therapeutic benefits of antioxidants in treating Alzheimer's disease has shown promising 

findings. Gallic acid (GA) and other polyphenols have been demonstrated to enhance cognitive functioning in 

elderly rats and prevent learning and memory losses following intracerebroventricular (ICV) infusion (Bhuia et 

al., 2023).  

The computational screening approach has recently significantly improved the effectiveness of the present drug 

development process (Ogunlana, et al., 2023). In the modern day, it is frequently employed to speed up the 

drawn-out and expensive processes involved in drug discovery and design, from identifying potential targets, 

typically receptors or enzymes, to creating and refining novel compounds with drug-like properties (Adeoye et 

al., 2022). Therefore, every computational chemistry technique can influence and expedite a specific stage of the 

drug discovery process.  

These techniques range from quantitative structure-activity relationship (QSAR) to molecular docking, which 

simulates molecular interaction and generates potent inhibitory ability, or binding affinity (Adeoye et al., 2022). 

The current study was designed to investigate some phenolic compounds of plant origin and evaluate their 

inhibitory potential against AChE using molecular docking and molecular dynamics techniques, which may be a 

possible remedy for neurodegenerative disease.  

 

2. Materials and Methods 

2.1 In silico studies 

Thirty-eight phenolic compounds of plant origin were selected based on their therapeutic properties (Kiokias et 

al., 2020; Roleira et al., 2015) and then retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) 

(Table 1). Their 3D structures were prepared and docked against human acetylcholinesterase (hAChE) protein 

(PDB ID: 6O4W, resolution: 2.35 Å, wild type) in complex with donepezil to evaluate the phenolic compounds' 

complementarities and binding affinities. Maestro molecular docking software from the Schrödinger suite 

(version 12.7) was used for the docking studies. 

 

2.2 Protein preparation 

The hAChE (PDB ID: 6O4W) was downloaded from the Protein Data Bank (https://www.rcsb.org) and imported 

into the Maestro workspace. The highly solvated protein was prepared with the protein preparation wizard, 

keeping most default settings (Madhavi Sastry et al., 2013; Tavella et al., 2022). Considering the importance of 

water molecules during the acetylcholine hydrolysis (Nemukhin et al., 2013), only the water molecules beyond 3 

Å from the het groups were removed during the preprocessing stage, after which all the non-protein het groups 

were deleted, leaving only the bound donepezil ligand.  

The reliability of the binding affinity prediction has been reported to increase when these water molecules cannot 

form all possible H-bonds, and when they are removed (Pantsar; Poso, 2018). The H-bond was optimized, and 

the orientations of the water molecules were sampled using PROPKA at pH 7.0 (Rostkowski et al., 2011), 

followed by the application of restrained minimization using OPLS4 to freely minimize hydrogen atoms while 

giving room for heavy atom movement within a root mean square deviation (RMSD) of 0.3 Å to relax any 

strained geometry (Pasala et al., 2019).  

 

2.3 Ligand preparation 

The structures of the standard inhibitor donepezil and the 38 phenolic compounds were drawn with Maestro's 2D 

sketcher, converted to 3D structures upon saving, and subsequently prepared using the LigPrep module from the 

Maestro software (Schrödinger LigPrep, Schrödinger Release 2021-1, LLC, New York, NY, 2021). The possible 

ionization states of the compounds were generated using Epik as the pKa predictor at pH 7.0 ± 2.0 (Ashiru et al., 

2023). No tautomers were generated from the compounds, and the specified chiralities from the 3D structures 

were retained. The ligands were subsequently minimized using the OPLS4 force field (Lu et al., 2021). 

only the best pose was reported for the output. In addition, post-docking minimisation was also engaged. 
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Table 1. Phenolic compounds whose 3D structures were docked with acetylcholinesterase (Kiokias et al., 2020; 

Roleira et al., 2015). 

S/N Name S/N Name S/N Name S/N Name 

1 Coumarin 11 
p-Hydroxybenzoic 

acid 
21 Naringenin 31 Isorhamnetin 

2 Catechin 12 Gallic acid 22 Glycitein 32 Myricetin 

3 Gentisic acid 13 Caffeic acid 23 
Naringenin 

chalcone 
33 3-o-Caffeoylquinic acid 

4 
Protocatechuic 

acid 
14 Ferulic acid 24 Genistein 34 Rosmarinic acid 

5 
p-Coumaric 

acid 
15 Syringic acid 25 Kaempferol 35 Rutin 

6 Epicatechin 16 Piperic acid 26 Luteolin 36 4-o-Methyl-epi-gallocatechin 

7 Vanillic acid 17 Sinapinic acid 27 Capsaicin 37 

 

Phenyl-6-o-Malonyl-beta-d-glucoside 

8 
o-Coumaric 

acid 
18 Daidzein 28 Epigallocatechin 38 

 

Epi-gallocatechin-3-o-gallate 

 

9 Eugenol 19 Coumestrol 29 Ellagic acid  

 

 

10 Isoeugenol 20 Apigenin 30 Quercetin   

Source: Authors, 2025.  

 

2.4 Receptor grid generation 

The 20 Å deep gorge of the hAChE, which contained the bound donepezil crystal, was used to generate the 

receptor grid for the docking studies using the OPLS4 force field. The grid generation with the excluded cognate 

ligand (donepezil) allows a confined binding space within the active site for the various ligand poses. The default 

parameters were kept, like the van der Waals scaling factor of 1.0 and the partial charge cutoff of 0.25. An 

enclosing box of dimension 10 Å × 10 Å × 10 Å containing the centroid of the donepezil ligand was generated, 

and this defines the confined space for the docked ligands. No constraint was specified for the interactions of the 

ligands within the receptor; likewise, no volume was excluded. The catalytic triad at the bottom of the binding 

gorge consists of Ser200, the protonated glutamic acid Glu202, and His447. Other residues within the Peripheral 

Anionic Site (PAS) and the Catalytic Anionic Site (CAS) include Tyr72, Trp86, Tyr124, Trp286, and Phe338. 

 

2.5 Non-covalent docking of the phenolic compounds and donepezil against hAChE 

The generated receptor grid was retrieved and loaded onto the ligand docking panel, and the prepared ligands 

were chosen from the project table. The extra precision (XP) scoring function was applied with the ligands 

docked in flexible states. At the same time, keeping the protein in a "rigid" position. During the docking 

procedure, the ring conformations and nitrogen inversions were sampled while the Epik state penalty was 

applied to check if any ligand showed the highest binding affinity in an unfavourable protonation state. With the 
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XP scoring function, the XP descriptor information was marked to allow the post-visualization of the docking 

interactions for further rational optimization. No torsional bias sampling was set for any predefined functional 

group, and nonplanar conformations were not penalized. Different poses per ligand were sampled, but only the 

best pose was reported for the output. In addition, post-docking minimisation was also engaged.  

 

2.6 MM-GBSA re-docking of the ligands against hAChE 

The binding energies of the docked ligands were reassessed according to the combined Molecular Mechanics 

with Generalized Born and Surface Area (MM-GBSA) scoring function. The docked Post Viewer file from the 

previous receptor-ligand complex was loaded onto the Prime MM-GBSA panel. The variable-dielectric 

generalized Born continuum solvation model (VSBG), which uses water as the solvent, was chosen with OPLS4 

as the force field. The flexibility of the protein residues within the binding site was changed to cover a distance 

of 5.0 Å from the ligands. The binding affinities of the ligands were ranked, compared, and analyzed for further 

rational optimization.  

 

2.7 Molecular dynamic simulations: finding the stability of the protein-ligand complex 

The non-covalent docking parameters assume a structural rigidity of the protein with a flexible ligand. On the 

contrary, the protein and the ligand continually change shape during their interactions. It is, therefore, necessary 

to check the stability of the protein-ligand complexes. This was done using Desmond's Molecular Dynamics 

Simulations of the Schrodinger suite. MM-GBSA docked donepezil, myricetin, and the modified myricetin 

ligands B-1, A-2, and C-3 in complex with hAChE enzyme were used; at the same time, stability was determined 

by monitoring the potential energy of the system and the root mean square deviation (RMSD) of each 

protein-ligand complex.  

The system for the molecular dynamic simulations was set up using the System Builder in Desmond. The 

solvation of the complex was achieved using the predefined TIP3P explicit water model within an orthorhombic 

box using the OPLS4 force field. The required number of sodium and chloride ions was added to neutralize the 

system, and no volume within the ligand's surroundings was excluded for the salt and ion placements. The built 

system was simulated for 20 ns while the trajectory was recorded at every 20 ps. The normal temperature and 

pressure (NPT) ensemble class was chosen at 300 K and 1.01325 bar, respectively, and the model was relaxed 

before the simulation to minimize the water molecules. The analyses of the various interactions were done using 

the Simulation Interaction Diagram (SID).  

 

2.8 Analysis of ADME-Tox and drug-likeness 

Admetsar3 (https://lmmd.ecust.edu.cn/admetsar3/) and Swissadme (http://www.swissadme.ch/) were used to 

perform ligand-based investigations of the selected phytochemicals to identify the molecule that would qualify 

as a potential hit to reduce viral pathogenesis. The pharmacokinetics and drug-likeness of these compounds were 

screened using a variety of metrics and guidelines (Adelusi et al., 2022). The drug-likeness parameter was used 

to predict the route of administration of a drug candidate based on its bioavailability(Rossi et al., 2024). 

Toxicology risk prediction can show potential adverse effects of phenolic chemicals, facilitating rational 

medicine design. Predicting the hazardous effects of chemicals, including mutagenic, tumorigenic, irritating, and 

reproductive impacts, is crucial for drug development from laboratory to clinical application (Rossi et al., 2024). 

 

3. Results 

3.1 Reliability of the non-covalent docking procedure 

The reliability of the non-covalent docking procedure applied during the in silico studies was validated by 

re-docking the donepezil ligand into the hAChE enzyme. The conformation with the protonated 

N-benzylpiperidine moiety with the lowest docking score was the most likely binding mode. The RMSD of the 

donepezil ligands was calculated and was found to be 0.54 Å, which falls within a 2.0 Å maximum allowed 

deviation, and therefore the docking procedure was considered valid (Nissink et al., 2002). The results must be 

presented in the text itself or with the help of Graphs, Figures, and/or Tables. 

Considering the superposition using the maximum common structure between the two ligands, the indanone 

moiety of the ligands was perfectly aligned, and deviation was found within the N-benzylpiperidine rings, with 
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the chair conformations of the piperidine rings clearly displaying more deviations (Figure 1). As expected, the 

two bulky groups (the indanone and the phenyl) on the piperidine chair conformation occupied equatorial 

positions (Adigun et al., 2019). The only difference that caused the deviation was the directions of the indanone 

and the phenyl groups on the bridging carbons to the piperidine linker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The superposition of re-docked donepezil (grey) and the cognate ligand of the enzyme (green). 

 

3.2 Non-covalent docking of the phenolic compounds and donepezil against hAChE 

The binding pose of the co-crystallized donepezil in the active gorge of hAChE enzyme showed the crystal near 

the catalytic triad, which could be important in preventing acetylcholine from getting in contact with the catalytic 

Ser203, thereby inhibiting the hydrolysis of acetylcholine (Rants et al., 2022).  

Five notable interactions were observed when the 3D molecular interactions of donepezil within the binding 

pocket of the enzyme were analyzed. The protonated nitrogen of the piperidine ring simultaneously displayed 

two π-cation interactions with the benzene ring of Tyr337 (distance 4.19 Å) and the pyrrole ring of the CAS 

residue Trp86 (distance 5.28 Å).  

An additional two π-π stacking interactions could be observed between the benzene ring of the 

N-benzylpiperidine moiety of donepezil and the indole ring of the CAS Trp86 residue; one to the pyrrole ring of 

the indole backbone (distance 4.36 Å) and the other to the benzene ring (distance 3.72 Å). The carbonyl group of 

the indanone moiety of donepezil showed a hydrophobically packed hydrogen bond interaction with the nitrogen 

atom of Phe295 backbone (distance 2.00 Å).  

This type of interaction is critical in maintaining ligand stability within the protein's binding pocket. In addition 

to being a hydrogen bond interaction, the hydrophobic location makes it very difficult to break, thereby 

maintaining stability during the protein movement. Lastly, the benzene ring of the indanone moiety also showed 

a π-π stacking interaction with the benzene ring of Trp286 PAS residue (distance 3.81 Å). Most of these 

interactions are in agreement with earlier reports (Hosseini et al., 2020; van Greunen, van der Westhuizen, et al., 

2019). Both the GlideScore (GScore) and the DockScore in kcal/mol for the docked ligands are shown in Table 

2. 

The docked ionization state with the lowest binding energy was taken as the most probable binding pose and, 

therefore, was only reported in all the ligands. The observed differences between the GScore and the DockScore 

were due to Epik state penalties applied to a ligand that shows the lowest binding energy in an unfavourable 

ionization state. Donepezil showed the lowest binding energy at -16.4 kcal/mol, and many of the docked 

phenolic ligands displayed comparable energies to donepezil (Table 2). Most binding energy contributions from 

all the ligands, including donepezil, generally come from their lipophilic interactions.  
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Table 2. GlideScore (GScore) and the DockScore in kcal/mol for the docked ligands. 

S/N Ligand           Compound CID 
XP GScore 

kcal/mol 

DockScore 

kcal/mol 

MMGBSA 

dG Bind 

(kcal/mol) 

1 Donepezil        (3152) -16.4 -16.4 -91.4 

2 Myricetin         (5281672) -14.0 -14.0 -75.8 

3 Quercetin        (5280343) -13.5 -13.4 -66.0 

4 Epigallocatechin  (72277) -12.0 -12.0 -55.0 

5 Epicatechin     (72276) -11.7 -11.7 -54.7 

6 Catechin          (9064) -11.7 -11.7 -54.7 

7 Luteolin           (5280445) -11.6 -11.5 -50.8 

8 Isorhamnetin  (5281654) -11.4 -11.4 -58.8 

9 Rosmarinic acid (5281792) -11.2 -11.2 -54.6 

10 Kaempferol      (5280863) -11.2 -11.2 -56.1 

11 Apigenin           (5280443) -11.0 -11.0 -53.2 

12 Naringenin chalcone  (5280960) -11.4 -10.8 -28.3 

13 Rutin                 (5280805) -10.8 -10.7 -64.5 

14 Naringenin       (439246) -10.7 -10.7 -45.3 

15 

 

4-o-Methyl epigallocatechin 

(163184613) 

-10.6 -10.6 -67.2 

16 Genistein      (5280961) -11.6 -9.7 -22.6 

17 Daidzein        (5281708) -9.4 -9.4 -51.6 

18 Ellagic acid    (5281855) -9.4 -9.4 -73.5 

19 Glycitein        (5317750) -9.3 -9.3 -61.5 

20 Coumestrol   (5281707) -8.9 -8.9 -53.5 

21 3-o-Caffeoylquinic acid  (1794427) -8.8 -8.8 -26.9 

22 Capsaicin     (1548943) -8.2 -8.2 -61.6 

23 Epigallocatechin-3-o-Gallate  (65064) -8.2 -8.1 -74.9 
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24 Caffeic acid      (689043) -7.9 -7.9 -24.9 

25 Coumarin         (323) -7.5 -7.5 -39.1 

26 Gallic Acid        (370) -7.0 -7.0 -23.8 

27 o-Coumaric Acid  (637540) -6.9 -6.9 -24.0 

28 Piperic acid      (5370536) -6.7 -6.7 -40.7 

29 
Phenyl-6-O-malonyl-beta-D-glucoside 

(128708) 

 

-6.4 -6.4 -48.5 

30 Eugenol     (3314) -6.4 -6.4 -37.8 

31 Sinapinic acid    (637775) -6.2 -6.2 -24.7 

32 Ferulic acid         (445858) -6.2 -6.2 -23.9 

33 Protocatechuic Acid    (72) -5.9 -5.9 -27.1 

34 Isoeugenol          (853433) -5.8 -5.8 -44.6 

35 p-Coumaric Acid  (637542) -5.4 -5.4 -16.4 

36 p-Hydroxybenzoic Acid  (135) -5.4 -5.4 -11.0 

37 Gentisic Acid        (3469) -5.3 -5.3 -21.9 

38 Syringic acid         (10742) -5.2 -5.2 -17.9 

39 Vanillic Acid          (8468) -5.1 -5.1 -12.4 

Source: Authors, 2025. 

 

The binding site contains a lot of lipophilic residues interacting with the lipophilic rings of the ligands. Myricetin, 

quercetin, epigallocatechin, epicatechin, and catechin showed binding energies of -14.0, -13.5, -12.0, -11.7, and 

-11.7 kcal/mol, respectively. Interestingly, all of these ligands showed more hydrogen bond interactions than 

donepezil. This is aided by the presence of several hydroxyl groups on their molecules. Myricetin, for example, 

has an H-bond pair reward of -5.4 kcal/mol, while donepezil has -1.3 kcal/mol. The 3D interactions of myricetin 

within the binding gorge revealed two π-π stacking interactions between the benzene ring of Trp286 and the 

benzene ring of the chromenone moiety (distance 3.99 Å) and the pyranone ring (distance 4.37 Å) (Figure 2). 
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Figure 2. Interactions of myricetin within the binding pocket of hAChE enzyme (PDB ID: 6O4W). 

 

The 7-OH group of the chromenone moiety displayed two water-bridged H-bonds with NH of Tyr75 and the 

phenolic OH of Tyr72. The NH of Phe295 also showed hydrophobically packed H-bond interaction with the 

3-OH group of the chromenone moiety (distance 2.00 Å). As mentioned earlier, this type of H-bond interaction is 

essential in maintaining ligand stability within the binding pocket. Other interactions within the binding pocket 

involve H-bond interactions with two water molecules (Figure 3). Due to their structural similarity, myricetin 

and quercetin had similar binding energies and interactions. In Figure 3, the hydrophobically packed H-bond 

interaction of myricetin is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The hydrophobically packed H-bond interaction of myricetin. Source: Authos, 2025.   

 

The binding poses of (a) epigallocatechin, (b) epicatechin, (c) catechin, and (d) luteolin showing non-covalent 

interactions within the binding site of hAChE enzyme are also shown in (Figure 4). 
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Figure 4. Binding poses of (a) epigallocatechin (b) epicatechin (c) catechin and (d) luteolin showing 

non-covalent interactions within the binding site of hAChE enzyme (PDB ID: 6O4W). Source: Authors, 2025.  

 

3.3 MM-GBSA-based re-docking of the ligands against hAChE 

According to Hubbard and coworkers, better scoring and pose generation functions could be obtained from 

MM-GBSA than from a non-covalent docking mode (Haider et al., 2011). This is because MM-GBSA gives 

more accurate results, and its efficiency has been proven in many studies (Genheden; Ryde, 2015; Kaus et al., 

2015). As a result, the ligands were docked in MM-GBSA mode to evaluate their binding free energies and poses 

with the flexibility of the protein residues restricted within 5 Å from the ligand. The result is presented in Table 2 

above.  

Analysis of the MM-GBSA results shows the preservation of some interactions initially identified by the 

non-covalent docking. Among these, the π-π stacking interactions between the benzene ring of PAS Trp286 and 

the benzene ring of the chromenone moiety of myricetin were fully preserved but at a closer distance of 3.71 Å, 

instead of the original 3.99 Å. Likewise, MM-GBSA indicated H-bond interaction between 3-OH of the 

pyranone ring and the NH of Phe295 at a distance of 1.96 Å. 

One partially preserved interaction is the water-bridged H-bond interaction between 7-OH of the chromenone 

ring and the OH group of Thr75 side chain instead of the original NH of its amino group.  

In addition to the preserved interactions, MM-GBSA  identified new vital interactions of myricetin within the 

binding gorge of hAChE enzyme. The isolated benzene ring of myricetin showed two separate π-π stacking 

interactions with the benzene rings of Tyr337 and Tyr341 at 5.37 Å and 4.01 Å, respectively. The 7-OH group of 

the chromenone moiety displayed a water-bridged H-bond interaction with the OH group of Asp74, and the 

5’-OH of myricetin's isolated benzene ring showed an H-bond interaction with the phenolic OH of PAS Try124. 

Other H-bond interactions involved the 5-OH of the chromenone moiety and C=O of Ser293 in a water-bridged 

interaction, and the C=O of the pyranone moiety showed two H-bond interactions with NH of Arg296 (distance 

2.54 Å) and NH of Phe295 (distance 2.58 Å).  

Figure 5 shows the superimposed structures of myricetin from the non-covalent docking (green) and the 
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MM-GBSA (light grey) studies. The positions of the substructures were preserved, but MM-GBSA was able to 

move the ligand closer to the PAS residues. The high binding affinity shown by myricetin in this study agrees 

with several previous reports on myricetin's role in treating AD (Gupta et al., 2020; Ramezani et al., 2016; Song 

et al., 2021a; Wang et al., 2017a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Myricetin (a) re-docked with the MM-GBSA method and the superimposed structures of myricetin (b) 

from non-covalent docking (green) and MM-GBSA (light grey) within the binding gorge of hAChE (PBD ID: 

6O4W). Source: Authors, 2025. 

 

3.4 Structural modification of myricetin for binding affinity optimisation 

Myricetin, the ligand with the highest binding affinity, was modified to increase its geometric and electronic 

complementarities. The chemical modification was done using the carbonyl oxygen of the pyranone ring to form 

Schiff bases with different amino group-containing compounds. The Custom R-Group Enumeration panel of the 

Schrödinger suite was used to generate 333 ligands using 38 aliphatic monocyclic rings and 73 aromatic 

monocyclic rings as R-substituents to give the hydrazides A, the hydrazines B, and the imines C, as shown in 

(Table 3) and (Figure 6). The ligands were prepared as described previously, and the non-covalent docking was 

repeated with MM-GBSA analysis. DockScore filtering was applied to enrich the dataset with ligands having a 

minimum DockScore of -13.9 kcal/mol (using myricetin as the standard). A total of 30 ligands were obtained, 

and the top 5 ligands are shown in Table 3. 
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Table 3. The GScore, DockScore, and MM-GBSA values for the top 5 modified myricetins. 

Ligand R XP GScore kcal/mol 
DockScore 

kcal/mol 

MMGBSA 

dG Bind 

(kcal/mol) 

B-1  -17.7 -17.7 -102.0 

A-2  -19.3 -17.7 -84.0 

C-3 
 

-18.2 -17.5 -82.4 

C-4  -17.1 -16.6 -75.3 

B-5  -16.2 -16.2 -91.5 

Source: Authors, 2025. 

 

 

 

 

 

 

 

 

 

Figure 6. The GScore, DockScore, and MM-GBSA values for the top 5 modified myricetins. Source: Authors, 

2025. 

 

As mentioned earlier, 30 ligands showed higher binding affinities than myricetin after the structural 

modifications, and from these, ligands B-1, A-2, C-3, and C-4 displayed higher DockScores than donepezil. 

Using ligand B-1 containing an azetidine substituent as an example, the significant gains over the original 

myricetin come from lipophilic reward (32%), electrostatic reward (111%), and the electrostatic complementarity 

for having ligand atoms in a favourable electrostatic environment of the protein (300%). From the frequency of 

occurrence of the ligands, imine and hydrazine-containing compounds (B and C, respectively) showed better 

binding affinities than the hydrazide A. This could be due to a reduced interaction from the highly polar 

hydrazides, as the binding site analysis of the AChE binding gorge showed a highly hydrophobic environment 

(Barak et al., 2009; Steinberg et al., 1975). 

 

3.5 Molecular dynamics simulations: interaction stability of the protein-ligand complex 

The root-mean-square deviation (RMSD) for all the protein-ligand complexes was calculated for every frame in 

the trajectory. This was done to determine the average displacement of all the atoms for a specific frame 

compared to a reference frame. The RMSD for frame x is given by: 

 

Where N gives the number of atoms in the atom selection, t is the reference time, and r' is the post-superimposed 

position of the selected atoms in frame x with respect to the reference frame, while frame x is recorded at time tx. 
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The procedure is repeated for every frame in the simulation trajectory (Pasala et al., 2019). 
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Figure 6. RMSD of ligand (red) and protein Cα (blue) for (a) donepezil-AChE, (b) myricetin-AChE, (c) 

B-1-AChE, (d) A-2-BuChE, and (e) C-3-AChE over 20 ns MD simulation time. Source: Authors, 2025.  

 

The RMSD of the protein-ligand complex for donepezil, myricetin, and modified myricetins B-1, A-2, and C-3 

are shown in Figures 6a, b, c, d, and e, respectively. In the donepezil complex, both the protein and the ligand 

showed equilibration at around 12 ns, and no apparent divergence was observed till the end of the 20 ns 

simulation time. The protein showed a lower RMSD value than the donepezil ligand, but the fluctuational 

changes in the two cases were in the order of ~1Å.  

Comparing myricetin and its derivatives, the most stable ligand is hydrazine B-1, followed by hydrazide A-2 and 

then imine C-3, while myricetin showed some levels of divergence towards the end of the simulation. This result 

agrees with their dock scores and MM-GBSA values. Ligand B-1 achieved the equilibration point at 

approximately 5 ns, and this was maintained throughout the simulation time. In all the cases, including the 

donepezil complex, hAChE protein has RMSD values below 1.8 Å while ligands B-1 and A-2 have RMSD 

values below 3.0 Å and 2.4 Å, respectively, after they attained the equilibration. In contrast, both myricetin and 

C-3 showed RMSD values above 5 Å.  
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Figure 7. Protein-ligand contacts monitored during a 20 ns MD simulation at 300 K for the (a) hAChE-myricetin 

complex, (b) AChE-B-1 complex, (c) AChE-A-2 complex, and (d) AChE-C-3 complex. The stacked bar charts 

of the contacts are normalized to fractions, with values over 1.0 representing protein residues that make multiple 

contacts with the ligand. 

 

Molecular dynamics studies show the significant binding interactions between donepezil, myricetin, and the 

myricetin derivatives with the highest MM-GBSA scores. The protein-ligand contacts are shown in Figure 7. As 

expected, the amino groups of the azetidine substituent on B-1 and A-2 and that of the piperazine substituent on 

C-3 displayed the most important interactions. Ligand B-1 formed a new water-bridged interaction between 

Gln71 and its protonated amino group of the azetidine moiety.  

At the same time, there was no change in the frequency of interaction with Tyr72 except for the increase in the 

percentage of water-bridged interaction in B-1 with the accompanying decrease in H-bond interaction compared 

to myricetin. The interaction of myricetin with Tyr72 was coming from the 5’-OH group of the phenyl moiety at 

41% of the simulation time. However, in ligand B-1, the formation of the hydrazine group causes a change in the 
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binding pose, resulting in a water-bridged interaction between Tyr72 and the protonated amino group of the 

azetidine group. The significant gain for ligands B-1, A-2, and C-3 came from different interactions with Asp74, 

with ligand B-1 having the highest interactions with this residue, as shown in the 2D interactions diagram in 

(Figure 8) (close attention should be paid to the scale of the y-axis).  

The interactions include different H-bonds, Pi-cation interactions, and water-bridged H-bond interactions. The 

interaction of the modified ligands with Thr83 disappeared in B-1 and was almost insignificant in C-3, but was 

maintained in A-2. All the modified ligands showed an increased frequency of interactions with Trp86. The 

frequency of interaction with Asn87 only decreased in B-1, saw an increase in A-2, and was maintained in C-3. 

Additional interactions in the modified myricetins, especially ligands B-1 and A-2, involved Ser125, Glu202, 

Phe297, Phe338, Gly372, and His447 compared to myricetin. All these could explain the increased DockScore 

and the stability of the modified ligands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Schematic representation showing the interactions of ligands (a) myricetin, (b) B-1, (c) A-2 and (d) 

C-3 with the surrounding residues of hAChE during a 20 ns MD simulation at 300 K. Source: Authors, 2025. 

 

3.6 ADME-Tox profiling and drug-likeness 

Before a medicine can be approved, it must be screened for pharmacokinetic properties and drug-likeness 

potential (Ferreira; Andricopulo, 2019). Several guidelines have been proposed to assess if a drug candidate 

would be orally bioavailable, depending on the pharmacological class. Lipinski's rule is a widely used standard 

for determining a compound's bioavailability in small-molecule inhibitors (Adelusi et al., 2023). According to 

Lipinski and colleagues' careful analysis of orally active drugs, a potential drug candidate with an oral route of 

administration should not violate more than one of the following criteria: molecular weight less than 500 Da; the 

number of hydrogen bond donors <5; the number of hydrogen bond acceptors <10; and octanol-water partition 

co-efficient <5 (Adelusi et al., 2023).  

Molecules with poor absorption and low permeability characteristics are considered poor inhibitors, especially if 
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they violate more than one of these conditions (Adelusi et al., 2022). The results of this investigation, as given in 

Table 4, suggest that Quercetin and Epicatechin have the potential to be outstanding drug-like molecules since 

they do not violate any of Lipinski's principles. However, Myricetin and its modified analogues (Table 6) and 

Epigallocatechin only violated one rule with more than the required number of hydrogen bond donors. As a 

result, there is a good possibility that any of these compounds may act as promising candidates for drug 

development. 

High-throughput screening tests of several pharmacokinetic parameters are undertaken early in drug 

development; computational-based ADME-Tox predictions are currently enhancing this labour-intensive and 

capital-intensive effort. In silico ADME-Tox prediction analyses drug candidates' probable distribution and 

pharmacokinetics within a single global model. This prediction shows if the candidate will be suitable for drug 

development in the future, avoiding late-stage attrition and clinical development costs. MetStabOn (Podlewska; 

Kafel, 2018), admetSAR (Yang et al., 2019), ADMETlab (Xiong et al., 2021), and CypReact (Tian et al., 2018)  

have all been shown to be highly effective in predicting drug candidates’ pharmacokinetic and toxicological 

endpoints. Early screening for pharmacokinetic and pharmacodynamic features is increasingly being used to 

prevent undesired qualities from delaying the advancement of a drug candidate into the clinic.  

To that end, the top four phenolic compounds and myricetin analogues were subjected to the admetSAR analysis 

to determine their future potential as drug candidates. Tables 5 and 7 present our results of pharmacokinetic 

predictions of Quercetin, Myricetin, Epigallocatechin, Epicatechin,  the standard drug (donepezil) and 

myricetin analogues. For the prediction of absorption and distribution features of our drug candidates, we 

identified human intestinal absorption (HIA), P-glycoprotein substrate, and penetration through the blood-brain 

barrier (BBB) (Tables 5 and 7).  

The selected compounds and myricetin analogues in Tables 5 and 7 depict positive HIA values, including the 

standard, which may suggest that they are easily absorbed in the gut following ingestion. In the distribution 

section, Quercetin, Myricetin, Epicatechin, and Epigallocatechin exhibit negative BBB test results, indicating 

that they cannot cross the blood-brain barrier and thereby protect the central nervous system. However, the 

standard drug (donepezil) and myricetin analogues have a strong correlation showing a positive score for BBB, 

indicating that it has a more significant dispersion and may have a neurological impact. Quercetin, Myricetin, 

Epicatechin, and Epigallocatechin were also predicted to be non-substrates of P-glycoprotein. This implies that 

these substances may have favourable distribution characteristics. However, the standard drug (donepezil) and 

the myricetin analogues may act as P-glycoprotein inhibitors, limiting their distribution by P-glycoprotein efflux 

mediation (Wessler et al., 2013).  

The Cyp450 families have been recognised as a key pharmacological parameter in metabolism. Inhibition of 

these protein families, according to Lynch, may result in drug-drug interactions and bioaccumulation (Kehinde et 

al., 2022). According to our results, Quercetin and Myricetin inhibit one or more of these metabolic enzymes, 

while Myricetin analogues exhibit minimal or no inhibition of metabolic enzymes. It is crucial to note that 

non-acceptable toxicological profiles are important reasons for drugs' failure to pass clinical trials; hence, we 

have included Ames mutagenicity, acute oral toxicity, hERG inhibition, and carcinogenicity tests in this study 

(Tables 5 and 7).  

The carcinogenicity test results for all compounds, including the myricetin analogues and the standard drug, are 

negative, which clarifies why they are not carcinogenic. The hERG and Ames mutagenicity are important 

pharmacological indicators for determining if a drug-like substance is capable of causing cardiac arrhythmia 

(Babalola et al., 2022) and mutating DNA. The standard drug (donepezil) and Myricetin excel in the Ames 

mutagenicity test. However, Quercetin, Epigallocatechin, Epicatechin, and Myricetin analogues show positive 

Ames test results, suggesting they may have the potential to modify DNA. The standard drug (donepezil), which 

has a positive hERG test result, may influence the heart's potassium channel rhythm (cardiac arrhythmia). In 

contrast, the other compounds, including myricetin analogues, have negative values for the hERG test. 
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Table 4. Lipinski's character of donepezil and the top four ligands from the DockScore. 

Ligand Molecular weight LogP nHBA nHBD nViolation 

Donepezil 379.21 3.245 4 0 0 

Myricetin 318.04 1.115 8 6 1 

Quercetin 302.04 1.448 7 5 0 

Epigallocatechin 306.07 0.794 7 6 1 

Epicatechin 290.08 1.094 6 5 0 

Note: LogP: Octanol-water partition coefficient; nHBD: number of hydrogen bond donors; nHBA: number of 

hydrogen bond acceptors; nViolation: number of Violation. Source: Authors, 2025. 

 

Table 5. Prediction of the toxicity profiles of donepezil and the top four compounds from the molecular docking. 

Parameters/Ligands Donepezil Myricetin Quercetin Epigallocatechin Epicatechin 

Blood brain barrier (+/-) +(0.9250) -(0.7750) -(0.7750) -(0.6750) -(0.6750) 

Human intestinal absorption (+/-) +(0.9838) +(0.9071) +(0.9071) +(0.8922) +(0.8922) 

p-gp inhibitor (+/-) +(0.8860) -(0.9166) -(0.9191) -(0.9207) -(0.9411) 

LogS (+/-) -(2.425) -(2.999) -(2.999) -(3.101) -(3.101) 

Human oral Bioavailability (+/-) -(0.7857) -(0.5143) -(0.5429) -(0.7000) -(0.7857) 

Caco-2 +(0.6843) -(0.7367) -(0.6417) -(0.9372) -(0.9406) 

Carcinogenicity -(0.9600) -(1.0000) -(1.0000) -(0.9700) -(0.9700) 

Ames mutagenicity -(0.5800) -(0.5800) +(0.8410) +(0.6100) +(0.6000) 

Acute oral toxicity III (0.5250) II (0.7348) II (0.7348) IV (0.6433) IV (0.6433) 

Human either - a -go -go 

inhibition 

+(0.9520) -(0.7812) -(0.8410) -(0.4416) -(0.4678) 

Hepatotoxicity +(0.8677) +(0.6625) +(0.9025) +(0.6427) -(0.7375) 

CYP2C19 Inhibitor (+/-) -(0.8356) -(0.9025) -(0.5823) -(0.9041) -(0.9041) 

CYP1A2 Inhibitor (+/-) +(0.5072) +(0.9106) +(0.9106) -(0.9046) -(0.9046) 

CYP3A4 Inhibitor (+/-) -(0.7411) +(0.6951) +(0.6951) -(0.8309) -(0.8309) 

CYP2C9 Inhibitor (+/-) -(0.8189) -(0.5823) -(0.5823) -(0.9071) -(0.9071) 

CYP2D6 Inhibitor (+/-) +(0.8684) -(0.8553) -(0.9287) -(0.9231) -(0.9231) 

Source: Authors, 2025. 
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Table 6. Lipinski's character of the five modified analogues of Myricetin from the DockScore. 

Ligand Molecular weight LogP nHBA nHBD nViolation 

B-1 371.11 -0.218 9.0 7.0 1 

A-2 399.11 0.168 10 7.0 1 

C-3 385.13 -0.333 9.0 7.0 1 

C-4 384.13 0.327 8.0 6.0 1 

B-5 385.13 -0.201 9.0 7.0 1 

Note: LogP: Octanol-water partition coefficient; nHBD: number of hydrogen bond donors; nHBA: number of 

hydrogen bond acceptors; nViolation: number of Violation. Source: Authors, 2025. 

  

Table 7. Prediction of the toxicity profiles of modified analogues of Myricetin from the molecular docking. 

Parameters/Ligands B-1 A-2 C-3 C-4 B-5 

Blood brain barrier (+/-) +(0.0020) +(0.0000) +(0.0000) +(0.0230) +(0.0020) 

Human intestinal absorption (+/-) +(0.0070) +(0.0180) +(0.0750) +(0.0000) +(0.0020) 

p-gp inhibitor (+/-) +(0.0000) +(0.0000) +(0.0070) +(0.0020) +(0.0060) 

LogS (+/-) -(2.5760) -(2.9420) -(2.9720) -(2.6620) -(2.5480) 

Caco-2 -(6.1220) -(6.1430) -(6.1360) -(6.0800) -(6.1300) 

Carcinogenicity -(0.4860) -(0.4880) -(0.1740) -(0.1460) -(0.5860) 

Ames mutagenicity +(0.8070) +(0.8240) +(0.7540) +(0.7700) +(0.8250) 

Human either - a -go -go inhibition -(0.349) -(0.098) -(0.249) -(0.318) -(0.307) 

Hepatotoxicity +(0.8270) +(0.7360) +(0.9030) +(0.9030) +(0.8440) 

CYP2C19 Inhibitor (+/-) -(0.0000) -(0.0000) -(0.0000) -(0.0000) -(0.0000) 

CYP1A2 Inhibitor (+/-) +(0.0060) -(0.0290) -(0.6640) -(0.0680) -(0.0860) 

CYP3A4 Inhibitor (+/-) -(0.8230) -(0.9740) -(0.9580) +(0.9400) -(0.9920) 

CYP2C9 Inhibitor (+/-) -(0.0000) -(0.0070) -(0.0040) -(0.0000) -(0.0010) 

CYP2D6 Inhibitor (+/-) -(0.0000) -(0.0000) -(0.0010) -(0.0000) -(0.0000) 

Source: Authors, 2025.  

 

4. Discussion 

The global impact of Alzheimer’s disease (AD) constitutes a call for thorough investigation to establish effective 

and appropriate therapies. Cholinergic neurotransmission (AChE) is importantly implicated in the cognitive 

deficits of AD and other adult dementias. While treatments aimed at amyloid-β, tau hyperphosphorylation and 
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immunotherapy have been developed, they were not effective and were discontinued during phase II or III 

clinical trials (Madav et al., 2019). In the 1970s, a new cholinesterase inhibitor (ChE-I), physostigmine, was 

developed. The studies suggested that these drugs could produce a small positive effect on symptoms of AD that 

lasted for a few months and could stabilise/slow the decline in cognition and function during the moderate stages 

of the disease (Marucci et al., 2021). In 1983, the indanone-derived structurally distinct AChE inhibitor 

donepezil was synthesised by Sugimoto and coworkers at the Eisai Research Laboratory in Japan (Sugimoto et 

al., 2002). Donepezil was approved for the treatment of mild to moderate AD as the second drug by the FDA in 

1996, and at a higher dose of 23 mg/day, was later approved in 2010 for moderate to severe AD (English, 2012). 

Donepezil is a potent, specific and reversible AChE inhibitor that exerts its effect in the brain by enhancing 

acetylcholine concentration in the synaptic cleft (Marucci et al., 2021). 

Recently, a worldwide trend has been established for the use of natural products, because they have lower 

toxicity and are more economical compared with synthetic drugs. In this research, we investigated some 

phenolic compounds of plant origin and evaluated their inhibitory potential against AChE. To determine the 

inhibitory role of AChE by a certain phenolic compound, we employed a rigorous series of screening procedures. 

Molecular docking played a crucial role in this process by allowing the evaluation of both protein–ligand 

interactions and the binding affinities of the compounds being studied.  

Our team docked compounds to AChE, which produced binding energies of -14.0 kcal/mol for Myricetin, -13.5 

kcal/mol for quercetin, -12.0 kcal/mol for epigallocatechin, -11.7 kcal/mol for epicatechin and -11.7 kcal/mol for 

catechin. The reference drug donepezil showed the strongest binding interaction with -16.4 kcal/mol compared 

to thirty-eight (38) phenolic ligands, which docked onto the protein, even though all these ligands formed more 

hydrogen bonds than donepezil through the presence of multiple hydroxyl groups on their molecules. All docked 

ligands, including donepezil, produce their binding energy primarily from lipophilic interactions. The binding 

site consists of numerous lipophilic residues which bind with the lipophilic rings found in the ligands. Myricetin 

receives an H-bond pair reward of -5.4 kcal/mol, while donepezil receives -1.3 kcal/mol. The binding gorge of 

myricetin displayed two π-π stacking interactions between the Trp286 benzene ring and the chromenone moiety 

benzene ring at 3.99 Å and the pyranone ring at 4.37 Å. The exposed cavity of the target protein requires weak 

intermolecular forces between ligands and the target protein to maintain energetically favourable ligands (Islam 

et al., 2025). 

We structurally modified the ligand myricetin to enhance its geometric and electronic complementarity with the 

target protein. The pyranone ring carbonyl oxygen of myricetin underwent Schiff base formation through 

chemical modification by reacting it with different amino group-containing compounds. The Custom R-Group 

Enumeration panel in the Schrödinger suite generated 333 ligands by adding 38 aliphatic monocyclic rings and 

73 aromatic monocyclic rings as R-substituents to the structure. The reaction produced three product classes: 

hydrazides (A), hydrazines (B) and imines (C).  

The Schrödinger MM-GBSA analysis followed non-covalent docking to assess binding affinities for ligands 

which were prepared through established protocols. The research produced 30 new ligands, which led to the 

selection of the top 5 compounds.  After structural modifications, the top 5 ligands outperformed myricetin 

while also showing improved binding affinities compared to donepezil according to DockScore scores. The 

improved performance of Ligand B-1 resulted from substantial enhancement of lipophilic and electrostatic 

binding interactions. The AChE binding site appears more compatible with the imine (C) and hydrazine (B) 

derivatives compared to hydrazides (A), since hydrazides present strong polarity that makes them unsuitable for 

the hydrophobic AChE binding site. 

Molecular docking primarily evaluates the interaction between compounds and the target protein. However, it 

was also necessary to assess whether the compounds complied with established pharmacokinetic guidelines and 

to determine their potential toxicity. As shown in the results, Quercetin and Epicatechin exhibited strong 

potential as drug-like molecules, as they fully comply with Lipinski’s rules. In contrast, Myricetin, its modified 

analogues and Epigallocatechin each violated only one rule, specifically exceeding the recommended number of 

hydrogen bond donors. As is well established, two or more violations of Lipinski’s Rule of Five typically 

indicate a higher risk of poor bioavailability (Srivastava, 2021). Therefore, these compounds still hold 

considerable promise as candidates for drug development. 

Finally, considering the abundance of hydrogen bonds and their high bioactivity scores, we selected myricetin 

and its analogues alongside donepezil for molecular simulation analysis. The molecular dynamics simulations 

showed that all complexes reached stability, with donepezil equilibrating around 12 ns and ligand B-1 around 5 

ns. Ligand B-1 was the most stable among the myricetin derivatives, followed by A-2 and C-3, while myricetin 
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showed instability toward the end. RMSD values confirmed this, with B-1 and A-2 remaining under 3.0 Å and 

2.4 Å, respectively, while myricetin and C-3 exceeded 5 Å. These results are consistent with docking and 

MM-GBSA data, highlighting B-1 as the most promising candidate. 

Alzheimer’s disease is a complex, progressive, and irreversible neurodegenerative disorder (Simunkova et al., 

2019). Iron ions contribute to neuronal damage in AD by promoting oxidative stress (Hofer; Perry, 2016). 

Myricetin (MYR) is a potent iron chelator that can lower brain iron levels by downregulating transferrin receptor 

1 expression, enhancing antioxidant enzyme activity, and decreasing lipid peroxidation. These effects 

significantly reverse scopolamine-induced cognitive deficits in mice. However, the protective effect of MYR is 

notably reduced under a high-iron diet (Wang et al., 2017b). Furthermore, since acetylcholinesterase (AChE) 

plays a key role in learning and memory (Song et al., 2021b), MYR’s inhibition of AChE activity adds to its 

therapeutic potential (Wang et al., 2017b). Overall, these suggest that MYR and its analogue may alleviate 

neurological and cognitive impairments in AD by modulating brain iron homeostasis and AChE activity. The 

review by Pluta et al. (2021) also highlighted that myricetin can help reduce learning and memory impairments 

by inhibiting acetylcholinesterase. Moreover, its anti-inflammatory properties may help prevent acetylcholine 

depletion caused by inflammatory mediators like IL-1, thereby further supporting cognitive function (Pluta et al., 

2021). 

The findings presented in this study are derived solely from computational (in silico) experiments. Additionally, 

in vivo and in vitro laboratory tests are required to validate the outcomes reported here. As this study is predictive, 

the results should be interpreted with appropriate caution. Also, while we recognise that longer simulations could 

provide more comprehensive insights, the current analysis provides valuable preliminary insights into the 

protein-ligand dynamics and interaction stability. Future studies can explore this system further with extended 

simulations when computational resources become available. 

 

5. Conclusions 

In this study, thirty-eight plant-based phenolic compounds were retrieved from the PubChem database. These 

compounds, in addition to the cognate donepezil, were virtually screened against Acetylcholinesterase. The 

results of the virtual screening showed that myricetin, quercetin, epigallocatechin, and epicatechin displayed the 

highest binding affinities, though lower than donepezil. The molecular modification of myricetin was done by 

Schiff base formation using custom R group enumeration of the Schrödinger suite to give different hydrazides A, 

hydrazines B, and imines C, which were subsequently subjected to different virtual screenings. Four of these 

ligands from the three molecular classes showed better binding affinities than donepezil, in addition to the better 

stability of their protein-ligand complexes.  

The result of the molecular dynamics simulation agrees with the docking scores and the MM-GBSA values. 

From these, various molecular interactions were observed, which include hydrogen bondings, π- π stacking, 

π-cation, and, more importantly, hydrophobically packed H-bonding, which is essential in maintaining ligand 

stability within a binding pocket. From the results of the molecular docking, the top four phenolics with the 

highest binding affinities (myricetin, quercetin, epigallocatechin, and epicatechin), including myricetin 

analogues derivatives, were subjected to ADMET properties prediction and drug-likeness calculation using the 

Lipinski rule of five (Ro5).  

The favourable predicted results show these compounds could be further developed into potential drug 

candidates. However, highly powerful phenolic compounds also face hurdles such as poor bioavailability, labile 

structures, toxicity concerns, and a lack of clinical data. Overcoming these challenges necessitates advanced drug 

delivery platforms, structural optimisation, uniform formulation, and robust clinical trials. The integration of 

nanotechnology, artificial intelligence, omics, sustainable production practices, and regulatory support will 

enable the effective promotion as well as clinical translation of phenolics. 
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