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Abstract 

In recent times, environmental pollution has become a pressing issue. Different methods have been developed to 

detach hazardous materials from H2O bodies. Among these techniques, photo-catalysis has emerged as a 

low-cost and advanced method. However, finding a potent photocatalyst has been a topic of considerable 

research. Our study prepared CuO from copper acetate using hydrothermal treatment in an autoclave at 170 ºC 

for 14 hours. We introduced various quantities of Fe by adding FeSO4 mixture to Cu (CH3COO)2, following the 

identical method for preparing CuO. The resulting precipitate was cleaned with deionized H2O and dried at 100 

°C. The prepared substance was then heated at 450 ºC in a muffle furnace for 60 minutes. We characterized the 

manufacture of photocatalysts utilizing various techniques such as Ultraviolet (UV), FT-IR, SEM, EDX, and 

XRD. Our Ultraviolet (UV) spectrum analysis helped us recognize the adsorption spectroscopic analysis of 

un-doped and doped CuO with various ratios of Fe. FTIR spectroscopic analysis helped us identify functional 

groups in CuO NPs. Our XRD study showed the monoclinic composition of copper oxide nanoparticles. The 

SEM picture suggested that NPs exist in a spherical shape. We studied the catalytic activity of synthesized NPs 

concerning crystal violet (CV) colorant degradation below a direct ray of light irradiation. Our results showed 

that the degradation productiveness, as compared to CV colorant, was about 93.52% in 180 min. This research is 

of great importance in the quest for effective and sustainable solutions to environmental problems. The 

examination of electrical properties highlighted the promising aspects of Fe-doped CuO, particularly at 6% 

doping. This variant demonstrated superior dielectric parameters, lower tangent loss, semiconductor-like 

impedance behavior, and enhanced electrical conductivity, emphasizing its potential for applications in electrical 

and energy storage domains. 

Keywords: hydrothermal method, photocatalytic degradation, crystal violet dye. 

Síntese e caracterização de nanopartículas de CuO dopadas com Fe: Eficiência 

catalítica na degradação do corante cristal violeta e exploração de propriedades 

elétricas 

Resumo 

Nos últimos tempos, a poluição ambiental tornou-se uma questão premente. Diferentes métodos foram 

desenvolvidos para separar materiais perigosos de corpos de H2O. Dentre essas técnicas, a fotocatálise emergiu 

como um método avançado e de baixo custo. No entanto, encontrar um fotocatalisador potente tem sido um tema 
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de considerável pesquisa. Em nosso estudo, preparamos CuO a partir de acetato de cobre por meio de tratamento 

hidrotérmico em autoclave a 170 °C por 14 horas. Introduzimos várias quantidades de Fe adicionando a mistura 

FeSO4 ao Cu (CH3COO)2, seguindo o método idêntico ao da preparação de CuO. O precipitado resultante foi 

limpo com H2O deionizada e seco a 100 °C. A substância preparada foi então aquecida a 450 °C em mufla por 1 

hora. Caracterizamos a fabricação de fotocatalisadores utilizando diversas técnicas como Ultravioleta (UV), 

FT-IR, SEM, EDX e XRD. Nossa análise do espectro ultravioleta (UV) nos ajudou a reconhecer a análise 

espectroscópica de adsorção de CuO dopado e não dopado com várias proporções de Ferro. A análise 

espectroscópica FTIR nos ajudou a identificar grupos funcionais em NPs de óxido de Cobre. Nosso estudo de 

XRD mostrou a composição monoclínica de nanopartículas de óxido de cobre. A imagem SEM sugeriu que os 

NPs existem em forma esférica. Estudamos a atividade catalítica de NPs sintetizados em relação à degradação do 

corante violeta cristal (CV) abaixo de um raio direto de irradiação de luz. Nossos resultados mostraram que a 

produtividade da degradação, ao contrário do corante CV, foi de cerca de 93,52% em 180 min. Esta pesquisa é de 

grande importância na busca por soluções eficazes e sustentáveis para os problemas ambientais. O exame das 

propriedades elétricas destacou os aspectos promissores do CuO dopado com Fe, particularmente com 6% de 

dopagem. Esta variante demonstrou parâmetros dielétricos superiores, menor perda tangente, comportamento de 

impedância semelhante ao semicondutor e melhor condutividade elétrica, enfatizando seu potencial para 

aplicações em domínios elétricos e de armazenamento de energia. 

Palavras-chave: método hidrotérmico, degradação fotocatalítica, corante violeta cristal. 

 

1. Introduction 

Copper oxide (CuO) is a semiconductor with a mono-clinic shape and many exciting properties, such as 

antimicrobic activities, high strength, and very good thermal conductivity. It is a p-type semiconductor having an 

energy gap of 1.2-1.9 eve. It is a black transition metal oxide with a host of intriguing features, including high 

thermal conductivity, photovoltaic capabilities, stability, and antibacterial activity. Owing to these characteristics, 

CuO has been thoroughly studied for a variety of possible uses, including gas sensors, field emitters, 

electrochemical cells, magnetic storage gadgets, and catalysis (Aparna et al., 2012; Ahamed et al., 2014, Saeed et 

al., 2024).  

The most recent research suggests that differentiating the response of invisible surroundings with an oil and H2O 

compound solvent as a medium could produce nanoparticles with varied sizes and shapes. Transition metal 

oxides are a necessary family of semiconductors used in electronics, catalysis, solar energy conversion, and 

magnetic storage media (Jiang et al., 1998; Rajamohan et al., 2023; Bakhtiar et al., 2024; Liu et al., 2024). 

Because of their effectiveness as tiny fluids in energy transfer applications, CuO NPs are one of the more 

intriguing transition metal oxides.  

For instance, it has been noted that adding 4% CuO increases water's thermal conductivity by 20%. CuO is a 

small bandage semiconducting compound that finds usage in photothermal and photoconductive applications 

(Agarwal et al., 2016; Attiya et al., 2023; Naz et al., 2023; Muhammad et al., 2024). It can be utilized in a broad 

range of fields, such as photodetectors, batteries, supercapacitors, magnetic recording devices, and catalysis, 

among many others. Scientists are now motivated to manipulate its size and shape for optimal performance 

because of these characteristics (Ibupoto et al., 2018; Xu et al., 2020; Zhao et al., 2021). Effective biotic 

chemicals called copper compounds are frequently utilized in pesticide formulations and medical applications 

(Naika et al., 2015).  

Accordingly, the synthesis of copper oxide nanoparticles (NPs) becomes imperative. Cu+, Cu2+, and Cu3+ are the 

three oxidation states that can occur in copper (Cu), and metal oxide nanoparticles (NPs) can be doped with both 

kinds of electrons and holes (Khmissi et al., 2016; Nazir et al., 2020; Ali et al. 2024). The electrical configuration 

of the host material (CuO) can be modified by carefully doping transition metal ions into it, which improves the 

conductivity and physical characteristics of the resulting synthetic nanoparticles (Bayansal et al., 2014; 

Balkrishna et al., 2021; Pervaiz et al., 2023). In comparison to single-element doping, co-doping (2 types of 

atoms) into semi-conductor oxides has attracted a lot of attention because it produces enhanced photocatalytic 

activity and a unique character (Viruthagiri et al., 2014; Khan et al., 2023; Ali et al., 2024).  

Using the microwave approach, several research publications have shown how Ni doping affects the optical 

characteristics of pure CuO nanostructures (Thakur; Kumar, 2018; Zada et al., 2018; Zada et al., 2020; Shaheen 

et al., 2024). The physical and chemical characteristics of copper oxide nanoparticles make them intriguing from 

a technology standpoint. Intense heat superconductors, cells, gas detectors, catalysis, solar power conversion, 

and other applications can all benefit from their use. 
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Degradation of organic dyes using pure metallic nanoparticles is a popular area of research nowadays. Doping, 

on the other hand, modifies the electrical structures of native semiconductors to introduce flaws into their 

flawless crystal lattice and increase photocatalyst activity. These kinds of defects can capture holes or electrons 

produced during the photoexcitation process. Defect sites, like vacancies, also have an important role in 

enhancing the catalytic activation of strong bonds, which helps kinetic processes. Additionally, doping may 

cause the photocatalyst to produce more charge carriers, which could cause the bandage to change in size. To 

change photocatalytic activity in the direction of a substrate, doping can therefore change light adsorption, 

restrict re-combination through trap sites, and move Visual Basic (VB) or Citizens' Band (CB) locations (Xu et 

al., 2019; Sinha; De, 2020; Madani et al., 2021). 

Other names for crystal violet (CV) include methyl violet 10B, crystal violet, and gentian violet 3. 

N-[4-[bis[4-(dimethyl amino)phenyl]methylene]-2 is its IUPAC name. methylene cyclohexadiene-1-ylide 

-2,5-N-methylmethanaminium chloride is a member of the triphenylmethane colorant class, with the molecular 

formula C25H30N3Cl and chemical weight 407.98. The greatest absorption wavelength is between 589 and 594 

nanometers. Crystal violet is employed as a pH gauge, transitioning from yellow to violet at a pH of 1.6. It is 

utilized as an antibiotic factor in the pharmaceutics field and is the active element of Gram's stain. Both humans 

and creatures can use the colorant for outer skin disinfection. It is frequently utilized in paints and printing ink, 

as well as a purple colorant for fabrics like cotton and silk (Mittal et al., 2010; Hu et al., 2023; Khan et al., 2024).  

It is widely employed in the food sector, veterinary medications, biological stains, commercial fabric dyeing, and 

leather processing. An overabundance of CV colorant in the human body can lead to tetraplegia, elevated heart 

rate, irritated eyes, and long-lived harm to the clear mucosa surrounding the eyes. Thus, it's critical to detach CV 

colorant from hazardous effluent. The literature has descriptions of several methods for decontaminating crystal 

violet color. These consist of coagulation, membrane-filtration, absorption, enhanced oxidation, biological 

therapy, electrolysis, and photocatalytic degradation (Hu et al., 2020; Abdelrahman et al., 2023; Muhiuddin et al., 

2023).  

A common technique for producing nanomaterial using a solution-based reaction strategy is hydrothermal 

synthesis. It is possible to do this operation at a variety of temperatures, from very hot to room temperature. 

Depending on the air pressure of the principal element in the reaction, either high high-pressure or low-pressure 

situation can be used to edit the form of the resultant nanomaterial. This procedure has been successfully utilized 

to produce a wide variety of tiny materials. Compared to other techniques, hydrothermal synthesis has a quantity 

of benefits. It may be used to create high vapor-pressure nanoparticles with little material loss as well as unstable 

nanomaterial at high temperatures. Chemical processes in the liquid phase or multiphase can be used to precisely 

control the composition of the nanomaterial. During the hydrothermal reaction, nucleation and grain growth 

mechanisms regulate the size of the particles. The temperature regulates their production rate while holding other 

factors constant (Liu et al., 2014; Darr et al., 2017; Yang; Park, 2019). 

A thorough analysis of the publications that have already been published has revealed that no research has been 

done to date to ascertain the photocatalytic degradation of CV dye and electrical characteristics utilizing 

Fe-doped CuO NPs that are hydrothermally produced. In this context, NPs of copper oxide doped with iron were 

successfully synthesized via hydrothermal technique, and the structural, photocatalytic, and chemical stability 

were subsequently studied in the present research work. 

 

2. Materials and Methods 

2.1 Chemicals and reagents  

All the chemicals and reagents utilized in the synthesis of CuO nanoparticles are of analytical grade. The Copper 

(II)-acetate-1-hydrate (C4H6CuO4.H2O) is purchased from Sigma-Aldrich laborchemikalien GMBH, Iron Sulfate 

heptahydrate (FeSO4.7H2O) is purchased from Polifar group, China, Sodium hydroxide (NaOH) were obtained 

from Sigma-Aldrich company, Germany, Crystal Violet colorant and Ethanol were obtain from Daejung 

chemicals, S. Korea some of the appreciable substance that is being used in the method of this hypothetical 

effort, all over the complete experimental efforts, mineral water is utilized. 

 

2.2 Synthesis of CuO and Fe-doped CuO nanoparticles 

The hydrothermal method was employed to synthesize pure CuO NPs (C1) and various Fe-doped nanoparticles 

(C2, C2, C3, C4, and C5). In this process, 5 g of cupric acetate was dissolved in 100ml of distilled water. 

Simultaneously iron sulfate was added to the mixture following the proportions outlined in (Table 1). The 
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resulting solution was stirred, and NaOH was then added. To maintain a pH of 10, Sodium hydroxide (NaOH) 

was added drop by drop to achieve a homogeneous solution leading to the formation of a particular precipitate. 

Subsequently, the homogeneous mixture was transformed into a stainless-steel Teflon autoclave and put through 

to a heat of 170 °C for 14 hours. After completion, the stainless-steel autoclave was allowed to cool, and the 

contents were then cleaned and centrifuged to remove any unreacted components. The resulting precipitate was 

subjected to calcination at 450 ֯C. The scheme of the process is given in (Figure 1). The sample procedure is 

followed for the production of pure CuO NPs (C1). 

 

Table 1. Required ingredients for the preparation of the sample.    

Samples name Nature of NPs Cupric acetate Iron sulfate 

C1 Pure CuO NPs 5 g 0 g 

C2 2% Fe-doped CuO NPs 5 g 0.1 g 

C3 4% Fe-doped CuO NPs 5 g 0.2 g 

C4 6% Fe-doped CuO NPs 5 g 0.3 g 

C5 8% Fe-doped CuO NPs 5 g 0.4 g 

Source: Authors, 2024. 

 

Figure 1. Schematic synthesis of Strontium oxide nanoparticles was conducted using a hydrothermal method. 

Source: Authors, 2024. 

 

2.3 Photocatalytic degradation of CV dye 

To perform the photocatalytic technique, a 100 W incandescent light bulb was utilized. A solution of 120 mL of 

CV with a concentration of 25 parts per million (ppm) was mixed with a dispersion of photo-catalysts. The 

solution was stirred at room temperature for 25 min without light, to establish an adsorption/desorption 

equilibrium. The mixture was then subjected to ionizing radiation therapy while being vigorously stirred. To 

ensure complete removal of all solid catalyst, a small amount of the solution (4-5 mL) was periodically removed 

and centrifuged. Finally, the effectiveness of the catalyst in dye adsorption and degradation was evaluated using 

a UV-visible spectrometer. The dye (%) elimination can be calculated using the provided formula. 

 

%Degradation = 100 x (Co-Ct)/Co 

                                      

Where: C0 and C were initial and final concentrations after a particular time interval respectively. 
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2.4 Electrical properties 

A precise impedance analyzer (MICROTEST, 6630, Taiwan) and 2401 Keithley Source Meter Unit (SMU) were 

used for measuring electrical conductivity. Both instruments provided accurate measurements of the electrical 

properties of the tested materials. The measured di-electric continuous as a duty of frequency. 

 

2.5 Characterizations 

Various characterization techniques were utilized to examine and recognize the characteristics of collected 

materials. UV-visible spectroscopy studied was managed utilizing a Shimadzu UV-1800 spectroscope, 

wavelength scale from 190-1100 nm, helping absorbance calculation. The Fourier-transform infrared 

spectroscopy (V. 640, USA) scale from 400 to 4000 cm-1 was utilized to examine association by establishment 

spectrum from a 0.09 g element. Photoluminescence (PL) analysis, accomplished at Abdul Wail Khan University 

Mandan, is involved in assessing substance clarity with a spectral scale of 230 to 1000 nm and a nontoxic 

procedure. X-ray diffraction diffract-meter (D-2 Passer, Barker, Denver, CO, USA) was utilized by employing 

20 degrees per minute, and a Cu kα irradiation source was utilized, giving under-standings into the crystalline 

shape of the sample. The structure analysis of collected material was collected through a scanning electron 

microscope (SEM) (model, JSM5910, JEOL. Kyoto, Japan) with an increasing voltage of 30 Kv was utilized to 

search the outside and structure of the collected materials. 

 

3. Results and Discussion  

This study utilized various pathways to regulate the optic, structural, and key features of un-doped and Fe-doped 

CuO NPs. Measurement of the photo catalytic degradation of photocatalysis was performed using valuable 

crystal violet colorant below light irradiation. 

 

3.1 Ultra-violet visible spectrometry 

The UV-Vis Spectroscopy of the sample is shown in (Figure 2). The light absorption of the samples shows that 

all the samples absorb a major portion of light in the visible light range. The absorption ranges start roughly at 

550 nm and increase as the wavelength increases. After the introduction of the iron in the parent CuO 

nanoparticles, the light absorption is further improved. This increase in light absorption plays a vital role in the 

photocatalytic process for pollutant degradation below the stipulated condition. 

 

Figure 2. UV-visible spectroscopy of pure copper oxide and Fe-doped CuO NPs. Source: Authors, 2024. 

 

3.2 Fourier transform infrared (FTIR) spectrometry 
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The Fourier-transform-infrared (FTIR) spectroscopy is a technique used to confirm the presence of molecular 

functional groups. The Fourier-transform-infrared (FTIR) scale was at 400 cm-1 to 4000 cm-1 and the result is 

shown in (Figure 3), the high peak at about 3300 cm-1 is caused by the absorbed H2O molecules. This as it may 

be because of H2O absorbed on the outer side of Cu nanoparticles. The two infrared adsorption peaks explicate 

the vibrational way of Cu nanoparticles on the scale of 500-800 cm-1. Peaks between 400 and 600 cm-1, such as 

608, 480, and 450 cm-1, are assigned to CuO species and confirm the presence of copper oxide. The peak at 580 

cm1 could be the presence Fe-O stretching of in the C4 sample. (Khan et al., 2023). 
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Figure 3. FTIR Spectra of synthesized C1 and C4 samples. Source: Authors, 2024. 

 

3.3 X-ray diffraction analysis 

X-ray diffraction analysis (XRD) is a highly effective way to note out about crystalline materials. It is a 

one-phase, crystalline, and mono-clinic shape of copper oxide nanoparticles. The X-ray diffraction analysis 

(XRD) detail from our sample is shown in (Figure 4). The dispersion peak at 2-theta = 32.46°, 35.46°, 38.65°, 

48.68°, 53.37°, and 58.25° are compared to the crystal planes (110), (022), (111), (-202), (020), and (202) 

respectively.  

X-ray diffraction analysis (XRD) shows that the compound is not one phase, and some more peaks are obtained 

due to an incomplete reaction. It is shown in the return plane at (110), (022), (111), (-202), (020), and (202) in 

the design, which can be connected to the monoclinic periods. Also, no emission peaks attached to Cu and other 

hazards are obtained in these patterns (Jabli, 2023; Yildirimcan, 2023; Mohanapandian et al., 2024). 
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Figure 4. XRD pattern of C1, C2, C3, C4, and C5 samples. Source: Authors, 2024. 

 

3.4 Energy dispersive X-ray (EDX) analysis 

Because of its high reactivity, energy-dispersive X-ray is highly utilized in the identification of components. 

Observations of the synthesized nanoparticles using EDX were carried out on the energy scale of 0 to 20 KV. 

Figure 5 shows an energy-dispersive X-ray of 6% iron-doped copper oxide NPs. The figure shown that Cu and O 

both have large level peaks, while C have sharp-edged peak. It is highly pure that the sample involves all of the 

necessary components, which is evidence of the large purity of the sample. In addition, Cu and O are present in 

the sample 6% Fe-doped Cu NPs in essential amount, copper is present in a great amount which is 92.72 percent, 

but the amount of doped iron is almost 2.24 percent (as shown in Table 2). The remaining 5.04% is carbon. 

 

 

Figure 5. EDX of C4 sample. Source: Authors, 2024.  
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3.5 Scanning electron microscopic (SEM) analysis 

By applying microscopic investigation and reaction, the length of prepared un-doped and iron-doped Cu 

nanoparticles were acknowledged. As shown in Figure 6, from the SEM pictures of Cu nanoparticles, it seemed 

that all molecules of copper oxide are curved and continuous crystalline structures. There is a larger tendency for 

collection. The SEM images up-holds the evolution of the systematic polyhedron structure of the copper oxide 

nanoparticles. The evolution of the extremely press-down spherical pattern is noticed. In some regions, large 

nanoparticles are covered by small nanoparticles. Similar SEM images of Fe-doped copper oxide NPs were 

followed and detailed. These SEM pictures also recommend the small agglomeration of a tiny structure. 

However, a Fe-doped small composite shows rectangular agglomeration of smooth surfaces.  

 

 
Figure 6. SEM images of C4. Source: Authors, 2024.  

 

3.6 Photocatalytic degradation 

The UV-visible adsorption scale of Crystal violet in the liquor shape is shown in (Figure 4.6) when the substance 

was uncovered to light at various periods from 0 to 180 min. The solutions hold for 30 min without light to 

achieve equilibrium between the absorption and desorption of the dye pieces. Illuminating the suspension with 

visible light from a 100 W incandescent lamp was picked at an away of 7 cm from the substance that was being 

explored. A piece of 10 mL was gathered at a time interval of 30 min in one of the reaction mixtures that were 

being upset regularly.  

From that point onward, the mixture was heated for 5 min at a speed of 3000 rpm, and the outcome is shown in 

(Figure 7), As per the discovery, the adsorption of the crystal violet at 590 nm regularly reduces as the light time 

passes from 0 to 180 min. This process is noted all over the study. This recommends that the light-degradation of 

CV is time-relevant. In view of the results, clearly, all the photo-catalysts exhibited display extraordinary 

photo-catalytic motion as opposed to CV in the liquid intermediate. In the current analysis, the photo-catalytic 

degradation of CV in the liquid median is expected to photo-catalyst deposit. For 90, 120, 150, and 180 min of 

radiation, the degradation power of Crystal Violet seemed as much highly in the case of 8% Fe-doped copper 
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oxide (83.21%), 6% Fe-doped (86.08%), 4% Fe-doped (93.52%), 2% Fe-doped (88.11%), and un-doped copper 

oxide (85.23%). Figure 8 shows the degraded samples over different periods. 

 

Figure 7. Treated and untreated CV dye solution of our experiment over various intervals. Source: Authors, 

2024. 
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Figure 8. % photo-catalytic degradation of CV dye: A) % photo-catalytic degradation of CV dye by C1. B) % 

photo-catalytic degradation of CV dye by C2. C) % photo-catalytic degradation of CV dye by C3. D) % 

photo-catalytic degradation of CV dye by C4. E) % photo-catalytic degradation of CV dye by C5. Source: 

Authors, 2024. 
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Table 2. % photocatalytic degradation of CV dye by C1, C2, C3, and C4. 

Time (min) 
Percent Degradation 

Pure CuO 2% Fe-CuO 4% Fe-CuO 6% Fe-CuO 8% Fe-CuO 

0 20.01 25.42 32.23 22.29 17.25 

30 42.22 45.67 67.34 43.98 39.6 

60 52.52 57.28 72.72 55.23 50.4 

90 65.16 65.96 81.69 66.05 63.31 

120 71.37 73.24 87.34 70.22 67.96 

150 78.65 80.89 93.52 75.12 73.37 

180 85.23 88.11 ------- 86.08 83.21 

Source: Authors, 2024. 

 

3.7 Electrical properties 

The examination of dielectrics can aid in comprehending the influence of frequency on the conductive behavior of 

materials (Nano and microstructure) (Kao, 2004). They are valuable for closely scrutinizing the electrical 

properties of interfaces between grains within materials (Greuter et al., 1990; Lu et al., 2004; Guo; Waser, 2006). 

Dielectric characteristics describe how materials behave when exposed to an electric field (Martinez-Vega, 2013). 

The primary sources of materials are derived from various forms of polarization, such as electronic (Ishai et al., 

2013), ionic (Maier, 2023), dipolar (Quan et al., 2017), and space charge (Lewiner; Insulation, 2010).  

The most significant impact on polycrystalline materials is the polarization of electrons which stands out in the 

light spectrum (Moore; Smart, 2020). Dielectric parameters, including the dielectric constant (εr) and di-electric 

loss (tanδ), outline the essential electrical traits of CuO nanoparticles. Understanding how these variables fluctuate 

with varying frequencies provides insight into the electrical mechanisms occurring in CuO nanoparticles. We 

closely examined these factors to grasp the electrical properties of CuO nanoparticles.  

From Figure 9, we can see that with an enhancement in frequency, the dielectric constant reduces, as the charge 

carriers become immobilized in diverse locations and orientations without alternating current. In the presence of an 

electric field, a charged particle can travel from one location to another, resulting in a change in the direction of an 

electric dipole (Oruç; Altındal, 2017).  

This shows that the complex dielectric constant fluctuates depending on frequency and illustrates the amount of 

energy that a material can retain as polarization and the amount of energy that is dissipated (Schrödle et al., 2007). 

From Figure 1, with an enhancement in the doping concentration of iron in CuO its dielectric constant increases 

which means that the increase in the doping concentrations increased its energy storage ability. From Figure 1, we 

can see that the C4 exhibits higher storage ability than the rest of all. 

The charge carrier is capable of relaxing by employing the dielectric loss mechanism. The loss tangent (tan) 

assesses the energy loss in comparison to the energy maintained in a periodic field. One can calculate it by dividing 

the energy loss by the energy stored and is given by, 

     (1) 

Where:  and  represent the actual and unreal pieces of the dielectric constant.  
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Figure 9. Shows various nanoparticles’ dielectric constant as a function of frequency. Source: Authors, 2024. 

 

Figure 10 represents the variation of frequency-dependent tan of copper oxide and iron-doped copper oxide 

nanoparticles at room temperature. As the frequency increases, the tangent loss increases at lower frequencies and 

a reverse trend occurs this is the increase in dielectric loss at higher frequencies. The increase in loss tangent is due 

to the dominance of the active part over the reactive part.  

The reduce in tan can be assign to the separate results of the Ohm part and the reactive component, with the latter 

growing as the frequency rises (Bolivar et al., 2003). Looking at (Figure 2) indicates that C4 dissipates less energy 

than C1, C2, and C3 samples which means their ability to store energy increases, and the 6% doped exhibits the 

lowest energy loss. 

 

Figure 10. Shows various nanoparticles’ tangent loss (tan) as a function of frequency. Source: Authors, 2024. 

 

The pattern of the impedance as a work of frequency shows the same linear behavior at high frequency while the 

value impedance starts to decrease when frequency gradually increases. This implies that the impedance in the 

frequency domain shows the behavior of semiconductor. In the domain of frequency, the impedance suggests that 

the CuO is less effective at blocking electric charge, allowing it to be released.  

With the addition of Fe doping to CuO nanoparticles, we can see the initial values at smaller frequencies and the 

final values at larger frequencies decrease. From Figure 3, the 6% Fe-doped CuO nanoparticles exhibit low 

resistivity which shows that the impedance decreases with the increase in doping concentrations. The findings 

demonstrate that as the frequency increases, so does the flow of electricity, as seen in (Figure 11). This occurs due  

101 102 103 104 105 106
0.0

3.0

6.0

9.0

12.0  C4

 C3

 C2

 C1

D
ie

le
ct

ri
c 

L
o
ss

 (
e"

)

Log f(Hz)



Brazilian Journal of Science, 3(8), 1-18, 2024. ISSN: 2764-3417  

13 
 

to the discharge of the accumulated space charge. 

 

Figure 11. Shows the impedance spectroscopic behavior of prepared samples of Fe-doped CuO nanoparticles as 

a function of frequency. Source: Authors, 2024.  

 

Figure 12 illustrates the variation of σ´ac with increasing frequency on a logarithmic scale. The analysis of 

electrical conductivity (σ´ac) on a logarithmic scale allowed us to investigate the flow of electricity at various 

frequencies. The correlated barrier hopping (CBH) model provides insights into interpreting our test findings 

(Jonscher, 1972). The movement of carriers in this model is a result of the barriers that exist between their 

respective locations. Figure 12 indicates a direct correlation between the total conductivity and increasing 

frequency. The conductivity of electricity is very good at higher frequencies.  

Two distinct methods control the movement of particles as they leap from one location to another in a small piece 

of copper oxide, dictating how electricity flows through it (Sayer et al., 1978). Inter well hopping is the name 

utilized to express the motion of electricity from one hole to another within a material. In the second scenario, 

electrons move between holes within a defect potential well through a process known as intra-well hopping 

(Koshy et al., 2015). Figure 4 illustrates that variances in conductivity exhibit various trends. There are two parts: 

one for low frequencies and one for high frequencies.  

The plateau region experiences a lower applied field frequency compared to the hopping frequency, which is when 

the pattern changes its slope. The conductance spectrum shows minimal variation at lower frequencies. At low 

frequencies, the conductance spectrum remains stable as the electric charge moves randomly. With an increase in 

AC frequency, there is also an increase in conductivity (Sati et al., 2014). As the frequency increases, more defects 

appear in the localized states, leading to higher conductivity at higher frequencies. This indicates that conductivity 

results from the transfer of charges between two locations (Sagadevan; Priya, 2015). Figure 12 Increments in the 

doping concentration cause an increase in AC conductivity. From this, the 6% Fe-doped CuO is a suitable material 

for electrical and storage applications. 
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Figure 12. AC conductivity of various concentrations of C1, C2 C3, and C4. Source: Authors, 2024.  

 

4. Conclusions 

In conclusion, the combination of copper oxide and iron-doped Cu-O nanoparticles using an aqueous methodology 

resulted in well-defined particles with a size below 100 nm. Characterization through FTIR, UV-visible, XRD, 

SEM, and EDX established the mono-clinic crystalline shape of copper oxide nanoparticles (CuO) and the 

appearance of metal-oxygen bonds. The optic property of Fe-doped Cu-O was successfully investigated using a 

UV-visible spectrum. Beyond the structural and optical aspects, the study extended to the practical application of 

these materials in the detached crystal violet (CV) dye from H2O. Copper oxide nanoparticles achieved an 85% 

removal rate, while Fe-doped CuO photocatalyst exhibited a significantly higher efficiency, degrading over 93% 

of the dye. 

Furthermore, the examination of electrical properties highlighted the promising aspects of Fe-doped CuO, 

particularly at 6% doping. This variant demonstrated superior dielectric parameters, lower tangent loss, 

semiconductor-like impedance behavior, and enhanced electrical conductivity, emphasizing its potential for 

applications in electrical and energy storage domains. 

In summary, the comprehensive investigation of synthesis, characterization, and application underscores the 

multifaceted potential of iron-doped copper oxide NPs. The combination of structural integrity, optical properties, 

and superior electrical characteristics positions these materials as promising candidates for diverse technological 

applications, including environmental remediation and advanced energy storage systems 
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