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Abstract 

Soybean (Glycine max (L.) Merril) is one of the most important seed legumes in the world due to its high protein 

and vegetable oil content, being widely used in the food industry and animal feed. However, environmental 

changes, especially those related to rising global temperatures due to CO2 emissions, are impacting plant 

productivity, including soybeans. In this context, genetic improvement programs have been fundamental to 

develop cultivars that are more resistant to abiotic stresses, such as droughts and intense rains. To evaluate the 

adaptability and stability of soybean genotypes in different environments, statistical methods such as AMMI 

(Multiplicative Model of Interpretation and Intersection) and BLUP (Best Linear Unbased Prediction) have been 

widely used. The AMMI model is used to analyze the interaction between genotype and environment, while the 

BULP considers random genetic effects, providing a more accurate estimate of genetic value. Furthermore, the 

weighting between stability (WAASBY) (Weighted Average WAASB) index has been used to identify stable, 

high-performance genotypes, combining stability and yield characteristics. In the research carried out, eleven 

improved soybean lines were evaluated in five municipalities in the central-western region of Brazil. Data were 

analyzed using statistical techniques such as linear mixed model, GGE biplot and AMMI and BLUP models. The 

results indicated that soybean lines showed significant variations in productivity in different environments, 

highlighting specific genotypes for each location. The productivity prediction analysis showed that the BLUP 

model was more accurate compared to the AMMI model. Furthermore, the GGE biplot identified the most 

suitable genotypes for each environment, considering both average performance and stability. Finally, the 

combination of characteristics from the AMMI and BLUP techniques, using the WAASBY index, made it 

possible to identify genotypes with high potential for yield and stability. In summary, the results of this research 

contribute to the development of soybean cultivars more adapted to variable environmental conditions, providing 

valuable information for genetic improvement programs and agricultural practices in the central-western region 

of Brazil. The integration of different statistical methods and evaluation indices has been fundamental to 

improving the selection of genotypes with high performance and stability, contributing to food security and the 

sustainability of agricultural production. 

Keywords: productivity, genotypes, environments, selection. 
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Centro-Oeste do Brasil 

Resumo 

A soja (Glycine max (L.) Merril) é uma das leguminosas de semente mais importantes do mundo devido ao seu 

alto teor de proteína e óleo vegetal, sendo amplamente utilizada na indústria alimentícia e na alimentação animal. 

No entanto, as mudanças ambientais, especialmente as relacionadas ao aumento das temperaturas globais devido 

à emissão de CO2, estão impactando a produtividade das plantas, incluindo a soja. Nesse contexto, programas de 

melhoramento genético têm sido fundamentais para desenvolver cultivares mais resistentes a estresses abióticos, 

como secas e chuvas intensas. Para avaliar a adaptabilidade e a estabilidade de genótipos de soja em diferentes 

ambientes, métodos estatísticos como AMMI (Modelo Multiplicativo de Interpretação e Interseção) e BLUP 

(Melhores Predições Lineares Não Viesadas) têm sido amplamente empregados. O modelo AMMI é usado para 

analisar a interação entre genótipo e ambiente, enquanto o BLUP considera os efeitos genéticos aleatórios, 

proporcionando uma estimativa mais precisa do valor genético. Além disso, o índice de ponderação entre 

estabilidade (WAASBY) (Weighted Average WAASB) tem sido utilizado para identificar genótipos estáveis e de 

alto desempenho, combinando características de estabilidade e rendimento. Na pesquisa realizada, foram 

avaliadas onze linhagens melhoradas de soja em cinco municípios da região centro-oeste do Brasil. Os dados 

foram analisados utilizando técnicas estatísticas como modelo linear misto, biplot GGE e modelos AMMI e 

BLUP. Os resultados indicaram que as linhagens de soja apresentaram variações significativas na produtividade 

em diferentes ambientes, destacando-se genótipos específicos para cada localidade. A análise de predição de 

produtividade mostrou que o modelo BLUP foi mais preciso em comparação com o modelo AMMI. Além disso, 

o biplot GGE identificou os genótipos mais adequados para cada ambiente, considerando tanto o desempenho 

médio quanto a estabilidade. Por fim, a combinação de características das técnicas AMMI e BLUP, utilizando o 

índice WAASBY, permitiu identificar genótipos com alto potencial de rendimento e estabilidade. Em resumo, os 

resultados desta pesquisa contribuem para o desenvolvimento de cultivares de soja mais adaptadas às condições 

ambientais variáveis, fornecendo informações valiosas para programas de melhoramento genético e práticas 

agrícolas na região centro-oeste do Brasil. A integração de diferentes métodos estatísticos e índices de avaliação 

tem sido fundamental para aprimorar a seleção de genótipos com alto desempenho e estabilidade, contribuindo 

para a segurança alimentar e a sustentabilidade da produção agrícola. 

Palavras-chave: produtividade, genótipos, ambientes, seleção. 

 

1. Introduction 

Soybean (Glycine max (L.) Merrill) is the most important seed legume in the world, occupying a prominent place 

among modern agricultural commodities (Maranna et al., 2021), due to its viable source and high protein and 

vegetable oil (Abdelghany et al., 2021). It is an important raw material for the food industry, contributing around 

25% to the production of edible oil, in addition, it makes up around two-thirds of the global protein concentrate 

used to feed livestock, poultry and fish (Maranna et al., 2021 ). 

However, with abrupt changes in environmental conditions, impacts on plant productivity are progressing at 

great intensity due to the direct and indirect effects of abiotic stresses (Raza et al., 2019). CO2 emissions are the 

main contributing factor to the greenhouse effect and the increase in global average temperatures, which affect 

agricultural productivity (Vaughan et al., 2018). 

Genetic improvement programs have been an important tool for improving soybean performance in regions 

affected by droughts and intense rains (Maranna et al., 2021). The main objective of this technology is to 

develop high-yielding cultivars in a wide range of environmental conditions (Alencar et al., 2018). For plant 

improvement, most agricultural crops depend on available genetic variability and diversity (Shilpashree, et al., 

2021). 

It is known that important complex traits are controlled by a large number of genomic regions with small effects 

whose magnitude and direction are modulated by environmental factors (Alencar et al., 2018). When dealing 

with quantitative and complex traits such as grain yield, the effects of G (Genotype) × E (Environment) 

interactions are considered for genotypic assessment and varietal selection (Maranna et al., 2021). Stable 

genotypic performance is highly desirable in improved cultivars, yield stability demonstrates the ability of a 

genotype to avoid significant fluctuations under a range of conditions (AlBallat et al., 2019). 

The Multiplicative Model of Interpretation and Intersection (AMMI) model is often used in conjunction with the 

GGE biplot graphical model to identify Experimental Environments (EEs) and also winning genotypes in each 
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MEs (Teleghani et al., 2023). This graphical model was proposed based on principal component analysis. This 

method helps breeders to simply evaluate genotype stability and the combination of stability with the yield of 

genotypes and different environments through the graphical representation of Genotype-Environment 

Interference (GEI) (Hailemariam Habtegebriel et al., 2022; Milioli et al., 2018). The unique feature of the GGE 

biplot is that, based on the graphs, it is possible to decide which genotype has the greatest potential in which 

environment or subgroup. In addition to the methods mentioned above, Best Linear Unbiased Predictions (BLUP) 

has also been used to analyze Metabolic Equivalents (METs). This method estimates the average yield of 

genotypes in mixed models with high efficiency (Shojaei et al., 2023; Yan; Tinker, 2005). 

To take advantage of both MMII and BLUP, an index called Weighted Average Absolute Scores of BLUPs 

(WAASB) was introduced, which is actually the integration of MMII and BLUP (Ruabiale et al., 2022; Teleghani 

et al., 2023). As, when identifying and introducing new cultivars, breeders simultaneously consider stability and 

yield characteristics, in addition to reducing GEI, genotypes with high yield potential are selected; Therefore, 

considering the WAASB index and yield (Y), the WAASBY index was introduced, in which both stability and 

yield characteristics are taken into account at the same time (Lee et al., 2023; Pour-Aboughadareh et al., 2022). 

In summary, the objective of this research was to identify stable and high-performance soybean genotypes, using 

AMMI and BLUP methods, in addition to using the WAASBY index to determine the genotypes with the best 

average performance and stability for complementary studies aimed at cultivation and use in the region 

Central-West of Brazil. 

 

2. Materials and Methods 

2.1 Plant material and field experiment 

The different soybean lines (Table 1) were supplied by “Caraíba Genética”. The phenology of these cultivars 

varies between 28 and 47 days from sowing to flowering (Average of 34 days) and 96 and 128 days from sowing 

to maturity (Average of 111 days). Eleven improved soybean lines were evaluated in five municipalities 

allocated to the soybean macroregion 3 (Microregion 301 and 302) and macroregion 4 (Microregion 402, 401 

and 403) in the 2021/2022 harvest (Table 2). According to the National Institute of Meteorology (INMET), the 

predominant climate in the regions is semi-humid tropical with average annual precipitation of 1200 to 1800 

mm. 

 

Table 1. Identification of lineages. 

GEN Lineage 

1 BMXBonusIPRO 

2 CG141794R59ip 

3 CG141890R5144rrM 

4 CG141998R632ipM 

5 CG142000r345rr 

6 CG142022R970ip 

7 CG152169R585rr 

8 CG152173R630rrM 

9 CG152173R656rr 

10 CG152174R667rr 

11 HOCristalinoIPRO 

Source: Authors, 2024. 

 

The experiment was carried out in a randomized block design with 3 replications at each location, totaling 165 

plots. The soybean seeds were sown in 4 crop lines with 5 m length plus 1 m corridor and 0.5 m spacing, the 

plant population varied according to the cycle (240 thousand – 300 thousand), totaling an average between 12 

and 15 plants per meter. Harvesting was carried out manually 96 days after planting as soon as the plants reached 
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physiological maturity. The harvest date varied according to the planting plot due to the lineage and location. 

The average duration of the experiment with the cultivars was 130 days. 

 

Table 2. Details of the municipalities where the genotypes were studied, including information on geographic 

location and soil fertility level. 

Municipality FU Macro Micro Height Latitude Longitude Fertility level  

Lucas do Rio Verde MT 4 402 395 12º 59’52’’S 55º 57’44’’ W High  

Montividiu GO 4 401 929 17º 16’34’’ S 51º 25’54’’ W High 

Querência MT 4 403 360 12º 39’12’’ S 52º 15’26’’ W High 

Rio Verde GO 3 301 856 17º 44’46’’S 50º 57’52’’W High 

Santa Helena de Goiás GO 3 302 632 17º 53’35’’ S 50º 44’11’’ W High 

Source: Authors, 2024. 

 

2.2 Data analysis 

All statistical analyzes were performed using the R 4.3.0 software (R Core Team, 2023). 

2.2.1 Descriptive statistics 

Descriptive statistics of the productivity of the eleven genotypes in each of the five tested environments were 

measured using the R-based "metan" package, which offers a simple and intuitive pipeline. The mean value of 

each variable was calculated for all combinations of genotypes and environments. 

2.2.2 AMMI Model 

For data analysis, we followed the AMMI method based on the four-step Gauch (2013) protocol. The AMMI 

model equation (1) is as follows: 

 

 (1) 

Where: Yger is the yield of genotype g in the environment e to replicate r, μ is the overall mean, αg is the 

genotype deviation from μ, βe is the environmental deviation from μ, λn is the singular value for the principal of 

interaction component axis (ICA) n , γgn and δen are the values of the eigenvectors of the genotype g and the 

environment e for the n axis, respectively, ρge is the residual, Κr(e) is the effect of the block r within the 

environment j, εger is the error. 

2.2.3 BLUP technique 

The BLUP technique is used to consider the effects of genotype and genotype by GEI as random. Unlike the 

AMMI model, a linear mixed model is used, and the formula (2) is as follows: 

 

(2) 

Where: β is the fixed unknown effect data vector (the block mean value in each environment), u is the GEI + 

genotype effect, X and Z represent the matrix involving β, u and Y, and ε are the random errors vector . In order 

to better predict the AMMI family model and the BLUP model, root mean square prediction difference (RMSPD) 

estimates were used to compare (Piepho, 1994). The variance components of agronomic traits were estimated by 

restricted maximum likelihood (RMLd) using the metan 1.14.0 package (Olivoto; Lúcio, 2020). 

2.2.4 Cross-validation procedure 

To evaluate the predictive accuracy of the AMMI and BLUP models, a cross-validation procedure was carried 

out according to Piepho (1994). The original data was randomly divided into a training set – two complete, 

randomly selected blocks per environment – and a validation set – the remaining block per environment. 
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Depending on the experiment, n AMMI models (AMMI0, AMMI1, …, AMMIF) were fitted to the modeling 

data according to equation. (1). 

Validation using BLUP considered the same steps and was based on equation (2). Although these 10 cultivars 

constitute a relatively small set of cultivars, they represent the majority of the area cultivated with oats in 

southern Brazil. Therefore, it is reasonable to assume that they constitute a random sample from a population. 

For all models (AMMI n and BLUP) predictive success was compared in relative terms using the root mean 

squared difference (RMSD) between model estimates and validation data, equation (3) as follows: 

 

(3) 

Where: ŷij is the model predicted value of the i -th genotype in the j -th environment and yij is the observed value 

of the i -th genotype in the j -th environment in the validation set. For all models (AMMI and BLUP model 

family), this procedure was repeated 200 times. A boxplot was used to show the distribution of the 200 RMSPD 

for each model. 

2.2.5 Combining features of AMMI and BLUP techniques 

To combine the characteristics of the BLUP and MMII techniques, we followed the method presented by Olivoto 

et al. (2019) . In this method, WAASB statistics were used, equation (4) as follows: 

 

 (4) 

Where: WAASBg is the weighted average of the absolute scores of genotype g, IPCAgn is the score of genotype g 

on the n -th interaction principal component axis (IPCA) and EP n is the value of the variance explained by the n 

-th IPCA. As achieving stable, high-yielding genotypes has become an important objective, we use the 

WAASBY index, equation (5) as follows: 

 

 (5) 

Where: WAASBYg is the superiority index with different weights between yield and stability for genotype g, θ y 

and θ s are the weights for yield and stability, respectively. rGg and rWg are the rescaled values of the g th 

genotype for yield and WAASB, respectively, and are equations (6 and 7) as follows: 

 

 

 (6) 

 

 (7) 

Where: G g and W g are the yield and WAASB values for genotype g, respectively. The mentioned method was 

carried out in the R software with the metan package (Olivoto; Lúcio, 2020). 

2.2.6 Mixed linear model 

The yield component data were analyzed using the linear mixed model, represented by the following equation 

(8): 

 

(8) 

Where: Yger are the observations of the yield components of genotype g in environment e and block r, µ is the 

average effect, 𝛼𝑔 is the fixed effect of genotype g, βe is the random effect of the environment and, (𝛼𝛽)𝑔𝑒 is the 

interaction of random effect of genotype g in environment e, wer is the random effect of block r in environment 

e, 𝜀𝜀𝑔r and the effect of the experimental error associated with the g-th genotype, the r -th block and the i-th 

environment, which is assumed as an independent normal distribution, with mean 0 and variance of 𝜎2 

(Hilmarsson et al., 2021). The linear mixed model analysis was performed using the metan 1.14.0 packages 

(Olivoto; Lúcio, 2020). 

2.2.7 GGE biplot 

The difference in G × E effects facilitated the biplot methodology, as described by Yan (2001), for stability 
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analysis using the R software. The biplot was based on the following model (Yan, 2001) equation (9): 

 

 (9) 

Where: Yij is the average yield of genotype i in environment j; yj is the average yield of all genotypes in 

environment j; λ1 ξi1 ηj1 and λ2i2 ηj2 are collectively the first principal component (PC1) and the second 

principal component (PC2), respectively; λ 1 and λ 2 are the singular values for PC1 and PC2, respectively; ξi1 

and ξi2 are the eigenvectors PC1 and PC2, respectively, for genotype i; ηj1 and ηj2 are the eigenvectors PC1 and 

PC2, respectively, for environment j; and ɛij is the model residue associated with genotype i and environment j. 

The interpretation of the GGE biplot was first described by Yan (1999). 

Productivity data from five environments were used to construct the GGE biplot (Genotype Main Effect plus 

Genotype-Environment Interaction) using the main components PCA1 and PCA2 according to the model (Yan et 

al., 2000; Yan et al., 2006; Singamsetti et al., 2021). GGE biplots were established based on site regression 

analysis (Crossa et al., 2002; Singamsetti et al., 2021), and GGE biplot tools were used to identify highly 

adaptable soybean genotypes with maximum average productivity per 'Average vs. Stability' (Yan et al., 2001). 

Visualization of the mean environment coordinates (AEC) of the GGE biplot revealed the genotypes with the 

highest average and stable productivity. 

 

3. Results and Discussion  

The productivity of the genotypes in the tested sites was highlighted by the following results (Figure 1): Lucas 

do Rio Verde (Genotype 3), Montividiu (Genotype 1), Querência (Genotype 8), Rio Verde (Genotype 8) and 

Santa Helena (Genotype 9). Numerous studies have previously shown the potential for simultaneously increasing 

soybean grain yield and grain filling rate under different conditions (Zanon et al., 2016; Vogel et al., 2021; 

Schoving et al., 2022). The variations observed in productivity between experimental genotypes imply the 

possibility of identifying preferred genotypes that present favorable characteristics in both environments 

(Oladosu et al., 2017; Ayed et al., 2021). 

For productivity, the prediction accuracy of the BLUP and AMMI models was tested based on the RMSPD. The 

results shown (Figure 2) are based on the average of 200 RMSPD estimates for each model tested. The model 

with the lowest RMSPD value is considered the most accurate model and vice versa (Yue et al., 2022; Reddy et 

al., 2024). In the current study, compared with AMMI family models, the BLUP model was found to be the most 

accurate prediction model. 

The GGE (Genotype plus Genotype vs Environment Interaction) model is widely used in evaluating genotypes 

and identifying megaenvironments in multi-environmental trials. The GGE biplot analysis revealed that, 

considering the average performance, the most suitable genotype for Rio Verde is genotype 8, while for 

Querência it is genotype 10, for Montividiu it is genotype 2, for Lucas do Rio Verde it is genotype 1 and, for for 

Santa Helena, genotypes 1, 2 and 3. 

The GGE model, considering average performance versus stability (Figure 4), demonstrated that, for Montividiu 

and Rio Verde, the most promising genotype was 8; for Querência, genotype 10 proved to be more suitable; for 

Lucas do Rio Verde, genotype 1 was identified as more favorable; and for Santa Helena, genotypes 1 and 3 stood 

out. Previous investigations have documented significant variations among tested soybean genotypes for traits 

examined in different environments (Li et al., 2020; Rani et al., 2023). The discernible interactions observed 

between the soybean genotype and the environment suggest a dynamic shift in the response and classification 

patterns of this soybean genotype in response to diverse environmental conditions (Happ et al., 2023; Hyten et 

al., 2024). 
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Figure 1. Heat map of productivity scores of different soybean genotypes (Glycine max) in different 

environments. Note: GEN = genotype; ENV = environment. Source: Authors, 2024. 

 

Figure 2. Boxplot showing RMSPD estimates from different prediction models tested for productivity. Source: 

Authors, 2024.  
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Figure 3. Biplot of productivity (kg/ha-1) versus weighted average of absolute scores. Source: Authors, 2024. 

 

Figure 4. Biplot of average performance vs stability for productivity. Source: Authors, 2024. 

 

When applying mixed models and BLUP, known variance components and random genetic effects are 

considered. This methodology increases the prediction of genetic value with the true value, reducing the 

prediction error (Alves et al., 2018). When this methodology was applied to the productivity character (Figure 3), 

cultivars 8, 3, 7, 9, 2 and 1 stood out with the highest grain yield regardless of the environment evaluated, 

showing greater adaptability to different environments. 
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Figure 5. BLUP means of the unbiased linear prediction for the grain yield character of soybean genotypes 

(Glycine max). Source: Authors, 2024.  

 

The simultaneous interpretation of productivity, stability and environments is done using the WAASB biplot with 

quadrants containing four different classes of genotypes and environments (Figure 6). In the case of the first 

quadrant, highly unstable genotypes and highly discriminatory environments are included (Olivoto et al., 2019).  

Genotypes 6 and 10, being the most unstable and with an average below the general average, are included in this 

quadrant. Ambientes, Lucas do Rio Verde and Querência were considered effective in discriminating between the 

genotypes under study. Unstable genotypes, namely Genotype 1, which otherwise have a mean greater than the 

overall mean, are included in the second quadrant. Although the Rio Verde, Santa Helena and Montividiu 

environments were discriminative, their environmental averages were higher than the general average. 

The third quadrant includes stable, widely adapted and low-yielding genotypes, with an average lower than the 

general average. A lower WAASB value indicates a greater magnitude of stability. Stable genotypes included in 

this quadrant are 4, 5 and 1. No environment fell into the third quadrant, which means that no environment can 

be considered less productive, with less discriminatory capacity.  

Likewise, in the case of the fourth quadrant, widely adapted and high-yielding genotypes (genotypic averages 

greater than the overall average) with low WAASB scores are included. They are 2, 3, 7, 8 and 9. No 

environments were included in this quadrant, so none were considered less discriminating but more productive. 
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Figure 6. BLUP-based WAASB stability index for genotype productivity for different locations. Source: Authors, 

2024. 

 

In Figure 7, the pre-tuned BLUP_model was used to design several WAASBY estimation situations, modifying 

the coefficients assigned to stability and average performance. In this scenario, the WAASBY superiority index 

is calculated considering the following coefficients: stability = 100; average performance = 0. In other words, 

only stability is taken into account for the classification of genotypes.  

In the next iteration, the coefficients become 95/5 (since the increment is 5). In the third scenario, the 

coefficients become 90/10, and so on, until these coefficients are 0/100. In the last iteration, the genotype 

classification for WAASBY perfectly matches the classifications of the response variable. As observed, the 

genotypes that stood out when taking only stability into account were genotypes 1, 2 and 8.  

While the genotypes that stood out when taking only average performance into account were genotypes 4, 5, 6 

and 11. In overall, genotypes 1, 2 and 8 demonstrated good performance in terms of stability and productivity. 

The good classification in WAASBY observed in genotype 8, demonstrating high productivity in this study, 

suggests its greater adaptability to high-yield environments.  

According to Betrán et al. 2003, a positive correlation was observed between high average performance and 

regression coefficient in various environmental conditions. According to the univariate stability analysis, 1, 2 and 

8 exhibited the highest stability for productivity, respectively, in the tested environments. For productivity, 

genotypes 5 and 6 showed superior average performance, when stability in all environments was not considered. 
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Figure 7. Different scenarios for WAASBY estimation of genotype productivity. Source: Authors, 2024. 

 

4. Conclusions 

It is concluded that the significant variation in productivity of soybean genotypes tested in different 

environments demonstrates that Genotypes 1, 2 and 8 proved to be highly productive and adaptable in high-yield 

environments, while genotypes 5 and 6 presented superior average performance. when stability was not 

considered in all environments. On the other hand, genotypes 4, 10 and 11 exhibited below average performance, 

while genotypes 3, 7 and 9 showed generally inferior performance in these environments for both stability and 

productivity. 
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