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Abstract 

The article presents a comprehensive study evaluating the performance differences between in-memory computing 

(IMC) and traditional disk-based database systems, specifically focusing on Redis and PostgreSQL. Given the 

escalating demands for real-time data analytics across various sectors, the research delves into the comparative 

efficiency of these two data management paradigms in processing large datasets. Utilizing a synthetic dataset of 

23.6 million records, we orchestrated a series of data manipulation tasks, including aggregation, table joins, and 

filtering operations, to simulate real-world data analytics scenarios. The experiment, conducted on a high-

performance computing setup, revealed that Redis significantly outperformed PostgreSQL in all tested operations, 

showcasing the inherent advantages of IMC in terms of speed and efficiency. Data aggregation tasks saw Redis 

completing the process up to ten times faster than PostgreSQL. Similarly, table joining, and data filtering tasks 

were executed more swiftly on Redis, emphasizing IMC's potential to facilitate instantaneous data analytics. These 

findings underscore the pivotal role of IMC technologies like Redis in empowering organizations to harness real-

time insights from big data, a critical capability in today's fast-paced business environment. The study further 

discusses the implications of adopting IMC over traditional systems, considering aspects such as cost, integration 

challenges, and the importance of skill development for IT teams. Concluding with strategic recommendations, 

the article advocates for a nuanced approach to incorporating IMC technologies, highlighting their transformative 

potential while acknowledging the need for balanced investment and operational planning. 

Keywords: in-memory computing, real-time analytics, data processing efficiency, redis, postgresql. 

Liberando análises em tempo real: Um estudo comparativo entre computação 

em memória e sistemas tradicionais baseados em disco 

Resumo 

Este artigo apresenta um estudo abrangente destinado a avaliar as diferenças de desempenho entre a computação 

em memória (IMC) e os sistemas tradicionais de banco de dados baseados em disco, focando especificamente no 

Redis e no PostgreSQL. Dada a crescente demanda por análises de dados em tempo real em vários setores, a 

pesquisa investiga a eficiência comparativa desses dois paradigmas de gestão de dados no processamento de 

grandes conjuntos de dados. Utilizando um conjunto de dados sintético de 23.6 milhões de registros, orquestramos 

uma série de tarefas de manipulação de dados, incluindo agregação, junção de tabelas e operações de filtragem, 

para simular cenários reais de análise de dados. O experimento, conduzido em uma configuração de computação 

de alto desempenho, revelou que o Redis superou significativamente o PostgreSQL em todas as operações testadas, 

destacando as vantagens inerentes da IMC em termos de velocidade e eficiência. As tarefas de agregação de dados 

viram o Redis completar o processo até dez vezes mais rápido que o PostgreSQL. Da mesma forma, as tarefas de 

junção de tabelas e filtragem de dados foram executadas mais rapidamente no Redis, enfatizando o potencial da 

IMC para facilitar análises de dados instantâneas. 

Essas descobertas sublinham o papel crucial das tecnologias de IMC, como o Redis, em capacitar organizações a 

aproveitar insights em tempo real de grandes dados, uma capacidade crítica no ambiente de negócios acelerado de 

hoje. O estudo discute ainda as implicações da adoção da IMC sobre os sistemas tradicionais, considerando 
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aspectos como custo, desafios de integração e a importância do desenvolvimento de habilidades para equipes de 

TI. Concluindo com recomendações estratégicas, o artigo defende uma abordagem matizada para incorporar 

tecnologias de IMC, destacando seu potencial transformador enquanto reconhece a necessidade de um 

investimento e planejamento operacional equilibrados. 

Palavras-chave: computação em memória, análises em tempo real, eficiência no processamento de dados, redis, 

postgresql. 

 

1. Introduction 

The burgeoning data volumes generated in today's digital economy underscore the critical role of big data analytics. 

Organizations across sectors leverage these analytics to drive decision-making, foster innovation, and gain 

competitive advantages. However, the sheer scale and complexity of the data pose significant challenges, notably 

in processing speed and responsiveness. 

Conventional data processing frameworks often struggle to meet these demands, primarily due to reliance on disk-

based storage that hampers rapid data retrieval and analysis. This latency can impede real-time analytics and 

insights, which are crucial for timely decision-making. In-memory computing (IMC) emerges as a potent solution 

to this bottleneck. By storing data in RAM rather than on traditional disks, IMC enables faster data processing, 

reducing latency and enhancing performance for complex computational tasks (Yang et al., 2021). 

This article aims to dissect the impact of in-memory computing on big data analytics, focusing on its efficiency 

and scalability. The discussion begins with exploring the importance of big data analytics, identifying the core 

challenges in managing vast datasets. It then transitions to an in-depth examination of in-memory computing, 

outlining how this technology addresses the identified challenges (Daase et al., 2021). 

Following this introduction, the article is structured to provide a comprehensive analysis of in-memory computing 

in the context of big data analytics (Kumar et al., 2021). The background and related work offers insights into the 

evolution of data processing technologies, setting the stage for a detailed exploration of IMC's core concepts and 

technological underpinnings. Subsequent sections delve into the efficiency and scalability of IMC systems, 

illustrating their application and benefits through case studies and real-world examples (Guirado et al., 2022). 

Additionally, integrating IMC with big data analytics platforms is scrutinized, highlighting architectural 

considerations and practical benefits. 

Despite its advantages, the adoption of in-memory computing is not without challenges and limitations (Jhang et 

al., 2021), which are critically assessed. The article concludes by projecting future directions for IMC, considering 

emerging trends and potential advancements. This structured approach aims to give readers a nuanced 

understanding of in-memory computing's role in enhancing big data analytics, underpinned by empirical evidence 

and practical applications. 

 

2. Background and related work 

Big data analytics encompasses the strategies and technologies enterprises use to analyze large volumes of data – 

ranging from terabytes to zettabytes (Ranjan; Foropon, 2021). The aim is to uncover hidden patterns, unknown 

correlations, market trends, customer preferences, and other useful business information. The significance of big 

data analytics lies in its ability to provide a foundation for decision-making across various sectors, including 

healthcare, finance, and retail, enhancing operational efficiency and creating new market opportunities. 

Traditional data processing architectures, often based on relational databases and disk storage (Sawadogo; 

Darmont, 2021), have been the backbone of IT infrastructures for decades. These systems, while reliable, face 

significant challenges in handling the velocity, variety, and volume of big data. Disk-based storage mechanisms, 

in particular, introduce latency due to the mechanical movement of disk heads, significantly slowing down data 

retrieval. This latency becomes a bottleneck in scenarios requiring real-time analysis and decision-making, 

underscoring the need for a more efficient approach. 

In-memory computing (IMC) has emerged as a transformative solution to these challenges (Amrouch et al., 2021). 

IMC dramatically reduces data access times by storing data in the Random Access Memory (RAM) of dedicated 

servers rather than on traditional disks, facilitating rapid processing and analysis of large datasets. This shift 

enables businesses to achieve real-time analytics, enhancing responsiveness and decision-making speed. 

Previous studies on in-memory computing have demonstrated its efficacy in various applications. For instance, 

SAP HANA, one of the leading in-memory computing platforms (Bach et al., 2022), has been shown to accelerate 
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database processing times by orders of magnitude compared to disk-based systems. Researchers have also explored 

the scalability aspects of in-memory computing, focusing on how distributed architectures can be leveraged to 

handle growing data loads without compromising performance. These studies underline the potential of IMC to 

revolutionize big data analytics by overcoming the limitations of traditional architectures. 

Rapid technological advancements and increasing adoption mark the current landscape of in-memory computing. 

Technologies such as Non-Volatile Memory Express (NVMe) (Lersch, 2021) and new DRAM alternatives (Patel 

et al., 2022) are pushing the boundaries of memory capacity and speed, further enhancing the capabilities of in-

memory systems. Moreover, cloud providers like Amazon Web Services, Google Cloud Platform, and Microsoft 

Azure are incorporating in-memory technologies into their offerings, making them accessible to a broader range 

of businesses. 

In conclusion, the transition from traditional data processing architectures to in-memory computing represents a 

significant shift in the approach to big data analytics. IMC offers unparalleled speed and efficiency, enabling real-

time analytics and decision-making that were previously unattainable. As the technology continues to evolve and 

become more integrated into cloud services, its impact on big data analytics is expected to grow, opening new 

frontiers for research and application. 

 

3. In-Memory computing: core concepts and technologies 

In-memory computing (IMC) has emerged as a pivotal technology reshaping how businesses process and analyse 

vast datasets. At its core, IMC involves storing data (Singh, 2023) in the computer's main memory (RAM) rather 

than on traditional disk drives. This fundamental shift allows for significantly faster access and manipulation of 

data, enabling real-time analytics and insights previously unattainable with disk-based storage systems. 

 

3.1 Defining In-Memory Computing 

In-memory computing harnesses the speed of RAM, which is orders of magnitude faster than mechanical disks 

and even solid-state drives (SSDs). This rapid data access speed is crucial for applications requiring real-time 

processing and analytics, such as financial transactions, online retail personalisation, and predictive maintenance 

in manufacturing. 

 

3.2 Enabling Technologies 

Several key technologies underpin the success and efficiency of in-memory computing: 

• Hardware Innovations: Advancements in hardware, particularly in RAM capacity and CPU performance 

(Kilickaya; Okdem, 2021), have significantly reduced the cost and increased the feasibility of hosting large 

datasets entirely in memory. Modern servers can now be equipped with terabytes of RAM, supported by multi-

core and multi-threaded processors capable of handling concurrent operations on large in-memory datasets. 

• Distributed Computing: In-memory computing often relies on distributed systems to scale beyond the 

memory limits of a single machine (Flocchini et al., 2022). Technologies like Apache Ignite and Hazelcast 

IMDG distribute data across a cluster of servers, enabling parallel processing and fault tolerance. This 

approach ensures that the system can continue operating without data loss even if one node fails. 

• Data Structures and Algorithms: Optimised data structures and algorithms specifically designed for in-

memory processing play a critical role (Kobak; Linderman, 2021). These optimisations minimise the need for 

data serialisation and deserialisation, further reducing latency and enhancing performance. 

•  

3.3 In-Memory vs. on-disk data management 

The shift from on-disk to in-memory data management brings several transformative benefits: 

• Speed: Accessing data from RAM is exponentially faster than reading from a disk, dramatically reducing 

query response times and enabling real-time analytics. 

• Simplicity: In-memory systems often simplify the architecture of applications by eliminating the need for 

complex disk-based optimisation techniques, such as indexing and data partitioning. 

• Concurrency: IMC systems can efficiently handle thousands of concurrent operations due to the low latency 

of memory access, benefiting multi-user applications and services. 
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However, in-memory computing also introduces challenges, including data volatility and higher operational costs. 

Volatility concerns are mitigated through replication, persistence mechanisms, and non-volatile memory 

technologies. The strategic advantages provided by real-time processing capabilities increasingly offset the cost 

factor. 

 

3.4 Benefits of data analytics 

In-memory computing revolutionises data analytics by enabling the following: 

• Real-Time Insights: Businesses can analyse data and derive real-time insights, facilitating immediate 

decision-making and rapid response to market changes (Naseer et al., 2024). 

• Complex Event Processing: IMC supports complex event processing by analysing and correlating events as 

they happen, which is crucial for fraud detection and automated trading systems (Al-Mohannadi et al., 2021). 

• High-Throughput Analytics: With the ability to process millions of transactions per second, IMC opens new 

possibilities for high-frequency trading, real-time recommendation engines, and IoT data analytics. 

In-memory computing represents a significant leap forward in data processing and analytics. IMC provides the 

speed and scalability necessary for real-time analytics in an era of exponentially growing data volumes by 

leveraging RAM for data storage and employing distributed architectures, optimised algorithms, and hardware 

innovations. As businesses continue to seek competitive advantages through data-driven insights, the adoption of 

in-memory computing technologies is set to increase, heralding a new era of instant analytics and informed 

decision-making. 

 

4. Challenges and limitations 

Adopting in-memory computing (IMC) technologies ushers organisations into a new data processing speed and 

efficiency realm. However, this journey has several challenges and limitations that necessitate careful 

consideration and strategic planning. 

 

4.1 Technical and operational challenges 

Integration Complexity: Incorporating IMC into existing IT infrastructures can be complex (Garofalo et al., 2022). 

Many organisations rely on legacy systems that are not readily compatible with modern in-memory solutions. 

Achieving seamless integration often requires substantial modifications to existing applications or the adoption of 

middleware solutions, which can introduce additional latency or bottlenecks, somewhat undermining the benefits 

of IMC (Sun et al., 2023). 

Skill Gap: The shift towards IMC requires a workforce skilled in new technologies and architectures. However, a 

significant skill gap exists in the market, with a shortage of professionals experienced in deploying and managing 

in-memory systems. Training existing staff or recruiting new talent can be time-consuming and costly, delaying 

realising IMC benefits. 

Cost Considerations: Despite the falling prices of RAM, building and scaling in-memory systems can still 

represent a significant investment, especially for large-scale deployments. The high upfront costs can be a barrier 

for small to medium-sized enterprises (SMEs) or organisations with limited IT budgets, making it challenging to 

justify the return on investment (Tuan; Rajagopal, 2022). 

 

4.2 Security, privacy, and data integrity concerns 

Vulnerability to Attacks: In-memory databases store critical data in RAM, which, if not properly secured, can be 

vulnerable to attacks. Techniques such as RAM scraping, where attackers attempt to read sensitive data directly 

from system memory, pose a significant risk. RAM data security requires robust encryption and access control 

mechanisms, which must be meticulously maintained to prevent unauthorised access. 

Compliance Challenges: Regulatory compliance poses another significant challenge for organisations adopting 

IMC. Regulations such as GDPR in the European Union and CCPA in California impose strict data privacy and 

security requirements (Voss, 2021). Ensuring that in-memory systems comply with these regulations requires 

additional safeguards, such as data anonymisation and secure data erasure protocols, which can complicate system 

design and operation. 
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Data Persistence: While the primary appeal of IMC is its volatility, which enables rapid data access and processing, 

this characteristic also introduces concerns regarding data persistence. In a system crash or power failure, data 

stored in RAM can be lost unless it is periodically backed up to persistent storage. Implementing effective data 

persistence mechanisms can add complexity and overhead to in-memory systems. 

 

4.3 Limitations of current in-memory computing technologies 

Scalability Limits: While IMC systems are designed to be scalable, there are practical limits to this scalability. 

Maintaining high-speed performance becomes increasingly challenging as systems expand due to the overhead 

associated with managing larger distributed systems, including network latency and synchronisation issues among 

nodes. 

Memory Capacity Constraints: Although modern servers can be equipped with significant amounts of RAM, there 

are still upper limits to the amount of data stored in memory. For organisations dealing with petabytes of data, this 

limitation necessitates selective data placement strategies, where only the most frequently accessed or critical data 

is kept in memory while the rest is offloaded to disk-based storage. 

Evolution of Technology: The landscape of IMC technologies is rapidly evolving, with frequent updates and new 

releases. Keeping up with these changes requires continuous monitoring and occasional system upgrades, which 

can disrupt operations and require additional investments in time and resources. 

In conclusion, while in-memory computing offers transformative potential for big data processing and analytics, 

navigating its challenges and limitations requires a strategic approach (Pedretti & Ielmini, 2021). Organisations 

must carefully evaluate the integration complexity, security risks, and cost implications while considering the 

operational impact of adopting such technologies. By addressing these challenges head-on, businesses can 

effectively leverage IMC to enhance their data analytics capabilities and gain a competitive edge in the digital era. 

 

5. Materials and Methods 

The author's research aims to conduct a comparative analysis of the efficiency of in-memory computing (IMC) 

compared to traditional disk-based systems in the context of big data processing. The main task is to evaluate the 

performance and scalability of IMC compared to traditional disk-based systems in processing real-scale data. 

 

5.1 Experiment setup 

Hardware Configuration: The experiment was conducted on a high-performance workstation with an AMD Ryzen 

9 3900X processor, renowned for its 12 cores and 24 threads, making it ideal for data-intensive tasks. The system 

boasted 64GB of DDR4 RAM, providing ample space for Redis to operate entirely in-memory without swapping 

data to disk, which is crucial for maintaining high-speed data access. We used a combination of SSDs for storage: 

a 250GB Samsung 860 EVO for the operating system and PostgreSQL database and a 2TB 860 EVO dedicated to 

larger data sets and Redis persistence. Including a Toshiba HDWD110 HDD allowed us to examine the 

performance impact of traditional disk-based storage compared to SSDs and in-memory. 

Software Environment: The system ran Windows 11, chosen for its robust support of both Redis and PostgreSQL. 

PostgreSQL was configured with default settings, aside from adjustments to the work_mem and shared_buffers 

parameters to optimize performance based on available system RAM. Redis was run in its default configuration 

to simulate a typical in-memory setup. Both databases were loaded with a synthetic dataset resembling retail 

transaction data, carefully designed to reflect real-world usage patterns, including various read, write, and 

transactional operations. 

 

5.2 Data set and queries 

The synthetic data set comprised 23.6 million records, each simulating a retail transaction with fields for 

transaction ID, customer ID, date, time, item list, quantities, and prices. This dataset was designed to challenge the 

databases with aggregations, joins, and filters. Queries were crafted to assess each system's ability to handle 

operations common in analytics workloads: 

• Aggregation Query: Calculated the monthly sales, requiring the system to scan and aggregate across millions 

of records. 
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• Join Query: Identified the top 8 customers by purchase volume, necessitating an efficient join between the 

transactions and a customer dimension table. 

• Filter Query: This query retrieved transactions over the last 25 days exceeding a particular value, simulating 

a targeted lookup based on specific criteria. 

 

6. Results 

During the execution phase of the experiment, each query underwent multiple iterations within both database 

systems, with precise recording of execution times. The results demonstrated Redis's notable advantage in terms 

of speed across all queries tested (Figure 1). 

 

Figure 1. Comparison of Execution Times for Operations in Redis and PostgreSQL. Source: Author, 2023.  

 

Redis showcased exceptional performance for the aggregation task by completing it in an average time of 4.8 s, 

while PostgreSQL took a considerably longer time of 28.6 s. This highlights the effectiveness of in-memory 

computing (IMC) in swiftly processing and summarizing extensive datasets. 

Regarding the join operation, known to be a bottleneck in traditional disk-based databases, Redis performed 

admirably with an execution time of just 7.4 s. In contrast, PostgreSQL struggled, requiring a significantly longer 

time of 82.3 s to complete the same task. This stark contrast underscores the efficiency of Redis's in-memory data 

access patterns in handling joint operations with agility. 

Similarly, Redis demonstrated remarkable efficiency for the filter query by achieving an execution time of merely 

1.2 s, significantly surpassing PostgreSQL's time of 18.9 s. This notable performance disparity underscores the 

advantage of direct RAM access for data retrieval operations in Redis. 

 

7. Discussions 

In-memory computing (IMC) represents a transformative leap in processing and analysing data, particularly in big 

data analytics. By storing data in RAM rather than on traditional disk drives, this technology allows for much 

quicker access and manipulation, bringing about a host of benefits and applications that are reshaping industries. 

 

7.1 Accelerated data processing 

One of IMC's most tangible benefits is its dramatic acceleration of data processing. Unlike disk-based systems, 

where the mechanical movement of the disk head introduces latency, IMC provides near-instantaneous data access. 

For analytics, this means complex queries that previously took minutes or hours can now be executed in seconds. 

This speed is not just about efficiency; it enables agility in decision-making processes, allowing businesses to 
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respond to insights in real-time. 

 

7.2 Real-world applications 

Financial Sector: In the financial industry, where markets move in milliseconds, the speed of IMC can be the 

difference between profit and loss. Banks and financial institutions use IMC for fraud detection by analysing real-

time transaction patterns and identifying suspicious activities before they can impact the bottom line. 

E-Commerce: For e-commerce platforms, IMC facilitates real-time personalised recommendations. By quickly 

analysing a customer's browsing and purchase history, algorithms can suggest relevant products, enhancing the 

shopping experience and boosting sales. 

Healthcare: IMC is also making waves in healthcare by enabling real-time patient monitoring and predictive 

analytics. Hospitals and clinics use IMC to instantaneously process data from medical devices, alerting healthcare 

providers to potential health issues before they become emergencies. 

 

7.3 Enhancing real-time data analytics 

IMC's ability to support real-time data processing opens new vistas in analytics. Streaming analytics, for example, 

relies on the capacity to analyse and act upon data as it is generated without the delay of storing it first. This 

capability is crucial for applications like network security monitoring, where detecting and mitigating real-time 

threats can prevent data breaches. 

Moreover, IMC supports complex event processing (CEP), allowing businesses to identify patterns and 

correlations across multiple data streams as events happen. This capability is invaluable in scenarios such as supply 

chain management, where real-time visibility can help identify bottlenecks or disruptions immediately. As we 

delve into the future directions of in-memory computing (IMC), it is crucial to understand that this technology is 

not static; it is evolving rapidly, driven by advancements in hardware, software, and the ever-growing demand for 

real-time analytics. The landscape of IMC is set to expand, with emerging trends and technologies shaping its 

trajectory. This exploration into the future of IMC will touch upon technological advancements, potential research 

areas, and considerations for implementation. 

 

7.4 Technological advancements 

Non-Volatile Memory Express (NVMe) Integration: NVMe, a protocol designed to fully exploit the speed of solid-

state drives (SSDs) over a computer's high-speed Peripheral Component Interconnect Express (PCIe) bus, is 

beginning to play a crucial role in IMC architectures. As NVMe becomes more prevalent, we can expect IMC 

systems to leverage its capabilities for even faster data processing speeds, reducing latency further and increasing 

throughput. 

Persistent Memory Development: Persistent memory technologies, such as Intel's Optane DC Persistent Memory, 

promise to combine the speed of RAM with the persistence of traditional storage. This development could 

revolutionise IMC, allowing larger datasets to be kept in memory across reboots, reducing the need for data 

reloading and thus enhancing operational efficiency. 

Hybrid Transactional/Analytical Processing (HTAP): HTAP capabilities enable the simultaneous running of 

transactional and analytical workloads on the same database system without compromising performance. Future 

IMC systems are expected to seamlessly integrate HTAP, facilitating real-time analytics on live transactional data, 

a feature particularly beneficial for sectors like e-commerce and finance. 

 

7.5 Future research areas 

Energy Efficiency in IMC Systems: As the adoption of IMC grows, so does its energy consumption. Future 

research could focus on developing more energy-efficient in-memory computing systems, possibly through 

hardware improvements or more efficient data management algorithms, to mitigate the environmental impact. 

IMC Security Enhancements: With data breaches becoming increasingly sophisticated, enhancing the security of 

in-memory data is paramount. Research into encryption methods that do not compromise IMC performance could 

provide a pathway to more secure yet efficient data processing. 

Federated Learning over IMC: As machine learning models become more prominent and data privacy concerns 
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grow, federated learning presents a method for training models across multiple decentralised devices or servers. 

Integrating federated learning with IMC could ensure privacy-preserving real-time analytics at scale, an area ripe 

for exploration. 

 

8. Conclusions 

In the experiment we conducted, we scrutinized the performance metrics of PostgreSQL and Redis in handling 

large volumes of data, intending to cast light on the effectiveness of in-memory computing (IMC) compared to 

traditional disk-based data storage systems. The results unveiled a stark contrast in processing speeds, underscoring 

the transformative potential of IMC technologies in big data analytics. 

Our comparative analysis revealed that Redis, an in-memory data structure store, significantly outpaced 

PostgreSQL, a traditional disk-based database system, across various data processing tasks. For instance, Redis 

achieved processing times that were nearly an order of magnitude in data aggregation tasks faster than PostgreSQL. 

Similarly, in operations involving table joins and data filtering, Redis demonstrated superior efficiency, completing 

tasks in fractions of the time required by its disk-based counterpart. 

These results spotlight the inherent advantages of IMC systems in managing and analyzing large datasets. By 

leveraging the speed of RAM, IMC technologies like Redis can offer real-time data processing capabilities, a 

critical requirement for applications in financial analytics, e-commerce, healthcare, and many other sectors where 

decision-making speed is paramount. 

The significance of our experiment's findings extends beyond the academic realm into practical applications. 

Businesses and organizations, especially those reliant on timely insights from big data, can glean the potential 

benefits of transitioning to IMC solutions from this study. However, it is also essential to consider the broader 

implications, including the need for investment in hardware and the challenges of integrating IMC technologies 

with existing IT infrastructures. 

Based on the insights gleaned from our analysis, we offer the following recommendations: 

• Strategic Investment: Organizations should consider investing in IMC technologies as a strategic move 

to enhance their data processing and analytics capabilities. The efficiency, responsiveness, and 

competitive advantage gains may offset the upfront costs associated with upgrading hardware and 

software. 

• Skill Development: Given the technical nuances of deploying and managing IMC systems, businesses 

must invest in training and skill development for their IT teams. Understanding the operational and 

architectural differences between IMC and traditional systems will be key to leveraging this technology's 

full potential. 

• Hybrid Approaches: For many organizations, a wholesale shift to IMC may not be feasible or necessary. 

Instead, adopting a hybrid approach, where critical data and processes are migrated to IMC while less 

time-sensitive operations remain on traditional systems, can provide a balanced path forward. 

• Security and Compliance: As with any technological adoption, ensuring data security and compliance 

with regulatory requirements is paramount. Organizations must incorporate robust security measures and 

data management practices when implementing IMC solutions. 

The compelling advantages of IMC, as demonstrated by our experiment comparing Redis and PostgreSQL, 

underscore the technology's role as a game-changer in data analytics. While challenges and considerations exist, 

the strategic adoption of IMC can significantly enhance an organization's ability to process and analyze data in 

real time, unlocking new opportunities for innovation and growth in the digital era. 

 

9. Considerations for future implementations 

Scalability Challenges: While IMC inherently supports scalability, managing massive distributed in-memory 

systems poses operational challenges. Future implementations will need to address issues related to data 

consistency, network latency, and fault tolerance at scale. 

Cost-Effectiveness: The high cost of RAM compared to traditional storage has been a barrier to IMC adoption for 

some organisations. Future trends may include cost reduction strategies, whether through hardware innovations or 

novel data management techniques that efficiently use in-memory resources. 

Interoperability with Legacy Systems: As organisations look to integrate IMC into their IT infrastructure, ensuring 
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interoperability with legacy systems becomes critical. Middleware solutions or APIs that facilitate smooth 

integration while maximising performance will be crucial for widespread IMC adoption. 

In conclusion, the future of in-memory computing holds promising advancements and challenges. As we move 

towards an era of instant analytics and real-time decision-making, the evolution of IMC technologies and strategies 

will play a pivotal role in shaping the next generation of data processing solutions. Balancing speed, security, and 

cost will be paramount in realising the full potential of transforming big data analytics. 
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