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Abstract 

Some vascular endothelial growth factor receptor-1 (VEGFR-1) inhibitors drugs have been used to cancer cells; 

however, their interaction with VEGFR-1 is very confusing. The objective of this research was to evaluate the 

possible interaction of eight steroid derivatives with VEGFR-1 surface using 3hgn protein, cabozantinib, 

pazopanib, regorafenib, and sorafenib as theoretical tools in DockingServer program. The results showed some 

differences in the interaction of the steroid derivatives (1-8) with the 3hng protein surface such as i) differences 

in the number of amino acids; ii) different position of some amino acids compared to cabozantinib, pazopanib, 

regorafenib, and sorafenib. Besides, the inhibition constant (Ki) for steroid derivatives 1, 3, 6 and 8 was lower 

compared to cabozantinib and sorafenib drugs. In addition, other data display that Ki for steroid analogs 1, 3, 4, 

6, 7 and 8 was lower compared with pazopanib and regorafenib. In conclusion, all these data suggest that steroid 

derivatives 1, 3, 4, 6, 7 and 8 could act as VEGFR-1 inhibitors and this phenomenon could be translated as good 

compounds to treat cancer cells. 

Keywords: cancer, steroid, VEGFR-1, docking, theoretical model. 

Interação de oito derivados de esteróides com VEGFR-1 utilizando um modelo 

teórico 

Resumo 

Alguns medicamentos inibidores do receptor 1 do fator de crescimento endotelial vascular (VEGFR-1), têm sido 

usados para células cancerígenas, no entanto, a sua interação com o VEGFR-1 é muito confusa. O objetivo desta 

pesquisa foi avaliar a possível interação de oito derivados de esteroides com a superfície do VEGFR-1 utilizando 

proteína 3hgn, cabozantinibe, pazopanibe, regorafenibe e sorafenibe como ferramentas teóricas no programa 

DockingServer. Os resultados mostraram algumas diferenças na interação dos derivados esteroides (1-8) com a 

superfície da proteína 3hng, tais como i) diferenças no número de aminoácidos; ii) posição diferente de alguns 

aminoácidos em comparação com cabozantinibe, pazopanibe, regorafenibe e sorafenibe. Além disso, a constante 

de inibição (Ki) para os derivados esteroides 1, 3, 6 e 8 foi menor em comparação com os medicamentos 

cabozantinibe e sorafenibe. Além disso, outros dados mostram que o Ki para os análogos de esteroides 1, 3, 4, 6, 

7 e 8 foi menor em comparação com o pazopanibe e o regorafenibe. Em conclusão, todos estes dados sugerem 

que os derivados esteroides 1, 3, 4, 6, 7 e 8 poderiam actuar como inibidores do VEGFR-1 e este fenómeno 

poderia ser traduzido como bons compostos para tratar células cancerígenas. 

Palavras-chave: câncer, esteróide, VEGFR-1, acoplamento, modelo teórico. 
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1. Introduction 

The endothelium exerts a wide variety of functions, including the control of vascular function, the blood fluidity, 

permeability of biomolecules, and others (Vane et al., 1990; Bouis et al., 2001). It is noteworthy that endothelial 

cells in response to tissue injury or hypoxic conditions can develop new vessels through a differentiation process 

called angiogenesis (Ge et al., 2021; Lee et al., 2021); this phenomenon can be regulated through several 

biochemical factors, such as vascular endothelial growth factor and fibroblast growth factor (Mezu-Ndubuisi; 

Maheshwari, 2021).  

Several studies indicate that vascular endothelial growth factor can interact with some endothelial cell surface 

receptors such as VEGF-R1, VEGF-R2 and VEGF-R3 which to indirectly regulate the formation of new blood 

vessels under normal conditions (Rahini et al, 2000; Shibuya, 2006). However, some studies suggest that 

VEGF-R1, VEGFR2 and VEGF-R3 activation can be involved in cancer cell growth (Carmeliet, 2005; Zhao et 

al., 2022). For example, a study showed that vascular endothelial growth factor can induce the proliferation of 

lymphatic vessels in patients with primary gastric cancer through VEGFR-3 activation (Yonemur et al 2001).  

Other data indicate that VEGFR-2 may be expressed in carcinoid cancer cells, this phenomenon play an 

important role in tumor growth and metastasis (Silva et al., 2011). Besides, a study showed that VEGFR-2 and 

VEGFR-3 can be expressed in ovarian cancer patients using Western-blotting methods (Klasa-Mazurkiewicz et 

al., 2011). Other reports displayed that both VEGFR-1 and VEGFR-2 receptors are expressed in bladder 

squamous cell carcinoma cell line using an immunoblot analysis (Kopparapu et al., 2013). Besides, a study 

showed that VEGFR-1 can regulate epidermal growth factor receptor to promote proliferation in 

colon cancer cells using Western immunoblotting (Nagano et al., 2019).  

On the other hand, it is important to mention that some drugs can act as VEGF receptor inhibitors to treat cancer 

cells; for example, a study showed that pazopanib act as VEGF receptors non-selective inhibitor which has been 

approved for the treatment of multiple histological subtypes of soft tissue sarcoma (Lee et al., 2019). Other study 

display that regorafenib (VEGF-R1, -R2, -R3 inhibitor) can confers an overall survival benefit in patients with 

refractory metastatic colorectal cancer (Bekaii-Saab et al., 2019).  

Other data indicate that regorafenib (VEGF receptors non selective inhibitor) has been used to treat Gastric 

Cancer (Pavlakis et al., 2016); however, regorafenib can induce adaptive resistance of colorectal cancer cells via 

inhibition of vascular endothelial growth factor receptor (Tamida et al., 2017). Furthermore, a study showed that 

the administration of sorafenib (VEGF receptors inhibitor) can prolong survival in patients with advanced 

hepatocellular carcinoma (Campani et al., 2020).  

All of these data indicate that several drugs can be used to treat cancer; however, some of these drugs can induce 

acquired resistance which can increase the risk of death in worldwide due to this clinical pathology (Lo et al., 

2015; Mir et al., 2017; Bruix et al., 2017). In the search for a therapeutic alternative to reduce the acquired 

resistance induced by some drugs, the drug vandetanib was used as VEGFR-1 inhibitor (Bianco et al., 2008), 

which is a predisposing factor involved in the acquired resistance induced to some anticancer drugs (Mezquita et 

al., 2016; Atzori et al., 2020).  

These data indicate that several drugs have been used for try of cancer cells through inhibiting VEGFR-1; 

however, its interaction with this biomolecule is not clear. Analyzing all these data the aim of this study was to 

evaluate the possible interaction of eight steroid-derivatives with VEGF-R1 using 3hng protein (Tresaugues et al., 

2013) cabozantinib (Kelley et al., 2022), pazopanib (Shiri et al., 2022), regorafenib (Zhang et al., 2019) and 

sorafenib (Stăncioiu et al., 2022) as theoretical tools in DockingServer program (Seidel t al., 2017).  

 

2. Materials and Methods 

2.1 Methodology general 

Steroid derivatives (Figure 1) were used to evaluate their possible interaction with VEGF-R1 as follows: 

 

https://ar.iiarjournals.org/content/33/6/2381.short
https://www.mdpi.com/1422-0067/20/22/5608
https://www.mdpi.com/1422-0067/20/22/5608
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Figure 1. Chemical structure of steroid derivatives (1-8). Source: Authors, 2024. 

 

2.2 Name International Union of Pure and Applied Chemistry (IUPAC) 

1 = 2-hydroxy-methylene-5-cholestan-3-one Barthakur, 

2 = 16-dehydropregnenolone acetate (Saikia et al., 2015) 

3 = Acetic acid 17-bromo-16-formyl-10,13-dimethyl-2,3,4,7,8, 9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl ester 

(Gogoi et al., 2012). 

4 = [(10R,14S)-20-methoxy-10,14-dimethyl-16-azahexacyclo [12.11.0.0
2,11

.0
5,10

.0
15,24

.0
17,22

]pentacosa-4,15(24),16,18,20,22-hexaen-7-yl] ace 

tate (Gogoi et al., 2012). 

5 = 17-Chloro-3-methoxy-13-methyl-7,8,9,11,12,13,14,15-octa-hydro-6H-cyclopenta[a]phenanthrene-16-carbaldehyde (Baji et al., 2016). 

6 = (1S,2S,11S,14S)-7-methoxy-14-methyl-16-azahexacyclo- [12.11.0.0
2,11

.0
5,10

.0
15,24

.0
17,22

]pentacosa-5(10),6,8,15(24),16,18, 20,22-octaene. 

(Baji et al., 2016). 

7 = 7-{1-[4-(3-Hydroxy-2-methyl-propyl)-3-methyl-isoxazol-5-yl]-ethyl}-4a,6a-dimethyl-icosahydro-pentaleno[2,1-a]phenanthrene-2,8- diol 

(Hernández-Linares et al., 2011). 

8 = 2-Bromo-3-hydroxy-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-cyclopenta[a]phenanthren-17-one (Barthakur et al., 2009). 

 

2.3 Pharmacophore model  

3D pharmacophore model for steroid derivatives (1 to 8) was evaluated using LigandScout 4.08 software 

(Temml et al., 2014). 

 

2.4 Protein-Ligand 

The interaction of steroid derivatives (1-8) with 3hng protein (PDB DOI:  https://doi.org/10.2210/pdb3HNG/pdb) 

was determined using cabozantinib, pazopanib, regorafenib and sorafenib as controls in DockingServer program 

(Seidel et al., 2017). 

 

2.5 Pharmacokinetics parameter 

Pharmacokinetic factors for steroid derivatives 1, 3, 4, 6, 7 and 8 were determined using the SwissADME 

software (Mahanthesh et al., 2020).  

 

2.6 Toxicology analysis 

Toxicology evaluation for steroid derivatives 1, 3, 4, 6, 7 and 8 were determined using the Gussar software 

(Lagunin et al., 2011).  

 

https://doi.org/10.2210/pdb3HNG/pdb
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3. Results  

3.1 Pharmacophore model 

Figure 2 shows a pharmacophore model for furanone and their derivatives (1 to 31) using the LigandScout 4.0 

program. The results displayed different types of hydrogen bond donors (HBD) and hydrogen bond acceptors 

(HBA) and lipophilic areas. 

 

 

Figure 2. Pharmacophore model for steroid derivatives (1-8). Note: Visualized with LigandScout 4.4 program. 

HBD = hydrogen bond donors (green), hydrogen bond acceptors (red), halogen bond donor (pink). Source: 

Authors, 2024. 
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3.2 Ligand-protein complex 

Table 1 and Figure 3 shows the different aminoacid residues involved in the interaction of steroid derivatives (1 

to 8), cabozantinib, pazopanib, regorafenib and sorafenib with 3hng protein surface. However, only aminoacid 

residue Ala874 is bound to 3hng protein surface compared with steroid derivatives 2 to 8), cabozantinib, 

pazopanib, regorafenib and sorafenib. 

  

Table 1. Aminoacid residues involved in the interaction of Cabozantinib (I), Pazopanib (II); Regorafenib (III), 

Sorafenib (IV) and steroid derivatives (1 to 8) with 3hng protein surface. 

Compound Aminoacid residues 

Cabozantinib Val841; Ala859; Lys861; Glu878; Ile881; Leu882; Val892; Val907; Val909; Cys1018; 

His1020; Leu1029; Ile1038; Cys1039; Asp1040; Phe1041 

Pazopanib Leu833; Glu878; Leu882; Val892; Val909; Tyr911; Cys912; His1020; Leu1029; 

Cys1039; Asp1040; Phe1041 

Regorafenib Val841; Ala859; Lys861; Glu878; Leu882; Ile885; Ile881; Val892; Val907; Val909; 

Cys912; Leu1013; Cys1018; Ile1019; His1020; Leu1029; Asp1040; Phe1041 

Sorafenib Glu878; Ile881; Leu882; Val891; Val892; Leu1013; Ile1019; His1020; Arg1021; Ile1038; 

Cys1039; Asp1040 

1 Ala874; Glu878; Ile881, Leu882; Ile885; Val891; Val892; Val909, Leu1013; Cys1018; 

His1020; Ile1038; Asp1040 

2 Leu833; Val841; Ala859; Lys861; Glu878; Leu882; Val892; Val909; Tyr911; Leu1029; 

Cys1039; Asp1040; Phe1041 

3 Val841; Ala859; Lys861, Glu878; Leu882; Ile885; Val892; Leu1013; Cys1018; His1020; 

Cys1039; Asp1040 

4 Leu833; Val841; Lys861; Glu878; Leu882; Val892; Val909; Leu1013; His1020; Leu1029; 

Cys1039; Asp1040; Phe1041 

5 Glu878; Ile881; Leu882; Val891; Val892; Leu1013; Cys1018; His1020; Arg1021; Ile1038; 

Asp 1040 

6 Asp807; Glu878; Ile881; Leu882; Val892; Val909; His1020 ; Arg1021; Cys 039; Asp1040 

7 Asp807; Val841; Lys861; Glu878 Ile881; Leu882; Val892; Val909; His 1020; Arg1021; 

Leu1029; Cys1039;  Asp1040; Phe1041  

8 Asp807; Glu878; Ile881; Leu882; Val891; Val892; Cys1018; His1020; Arg1021; Asp1040 

Source: Authors, 2024.  

 

Other data showed differences in energies levels for steroid derivatives (1 to 8) compared to cabozantinib, 

pazopanib, regorafenib and sorafenib (Table 2). Besides, inhibition constant (Ki) for 6 was lower compared with 

steroid derivatives (1-5, 7 and 8), cabozantinib, pazopanib, regorafenib and sorafenib. In addition, the Ki for 

steroid derivatives 1, 3, 4, 7 and 8 was lower compared to pazopanib, regorafenib and sorafenib.  
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Table 2. Thermodynamic parameters involved in the interaction of for steroid derivatives (1-8), Cabozantinib, 

Pazopanib, Regorafenib, Sorafenib with 3hng protein surface. 

Compound A B C D E F 

Cabozantinib -7.70 2.28  -8.77 -0.18 –8.95 1000.65 

Pazopanib –8.76 380.77 –10.15 –0.11 –10.26 999.38 

Regorafenib –5.05 198.17 –6.84 –0.09 –6.93 1004.77 

Sorafenib –7.03 7.03 –8.19 –0.23 –8.42 922.58 

1 -7.67 2.37 -8.77 -0.09 -8.86 895.72 

2 -5.88  49.22  -6.76  -0.04  -6.80  779.63 

3 -7.46 3.42 -8.33 -0.02 -8.34 818.61 

4 -6.95 8.11 -7.73 -0.10 -7.83 1000.54 

5 -8.31 815.92 -8.70 -0.20 -8.90 718.19 

6 -7.88 1.68 -8.13 -0.05 -8.18 820.06 

7 -10.73 13.56 -12.71 -0.11 -12.82 1049.24 

8 -7.92 1.56 -8.16 -0.06 -8.22 635.57 

Note: A = Est: Free Energy of Binding (kcal/mol); B = Inhibition Constant, Ki (mM); C = vdW + Hbond + 

desolv Energy (kcal/mol); D = Electrostatic Energy (kcal/mol); E = Total Intermolec. Energy (kcal/mol); F = 

Interact. Surface. Source: Authors, 2024.   
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Figure 3. Aminoacid residues involved in the interaction of steroid derivatives (1-8) with 3hng protein surface. 

Note: Visualized with DockingServer program. Source: Authors, 2024.  

 

3.3 Lipophilicity analysis 

The results (Table 3) showed that steroid derivative 1 could have a higher degree of Lipophilicity compared to 

compounds 2-8; however, compound 8 showed lower Lipophilicity compared to steroid derivatives 1-7. 
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Table 3. Lipophilicity degree for steroid derivatives (1 to 8) using several theoretical models. 

Compound ilogP XlogP3 WlogP MlogP Silicost-IT LogPo/w 

consensus 

1 4.82 9.36 7.33 5.50 6.62 681 

2 3.46 4.80 5.01 4.22 4.36 4.31 

3 3.40 4.50 5.34 4.33 4.77 4.47 

4 4.33 6.02 6.15 4.84 5.74 5.41 

5 3.27 4.73 4.85 4.04 5.05 4.39 

6 3.94 6.34 5.81 5.09 5.99 5.44 

7 4.17 6.64 5.88 4.47 5.37 5.31 

8 3.03 3.82 4.58 4.06 4.50 4.00 

Source: Authors, 2024.  

 

3.4 Pharmacokinetic parameters 

Table 4 shows the theoretical pharmacokinetic parameters for the steroid derivatives (1-8). The results showed 

that the gastrointestinal absorption of compound 1 could be lower compared to 3, 4, 6, 7 and 8. Furthermore, the 

metabolism of steroid derivatives involves different Cyp´s for each steroid derivative. 

 

Table 4. Pharmacokinetic parameters for steroids derivatives (1 to 8) using SwissADME program. 

Compound GI 

absorption 

BBB 

Permeant 

P-gp 

substrate 

Cyp1A2 

inhibitor 

Cyp 

2C19 

inhibitor 

Cyp2C9 

inhibitor 

Cyp2D6 

inhibitor 

Cyp3A4 

inhibitor 

1 Low No No No No Yes No No 

3 High Yes No No No Yes  No No 

4 High No No No No No No Yes 

6 High No No No No No Yes No 

7 High No Yes No No No No No 

8 High Yes Yes Yes No No Yes No 

Note: Cyp = P450 family; GI absorption = gastrointestinal absoption; PPB = plasma protein binding; vd = volume 

distribution; T1/2 = medium live; CL = clearance; Fu = Fraction unbound un plasms; BBB = barrier blood brain. 

Source: Authors, 2024.  

 

3.5 Toxicology analysis 

Table 5 showed that compound 1 requires higher doses through intraperitoneal, intravenous, oral and 

subcutaneous routes of administration to produce a certain degree of toxicity compared to steroid derivatives 

(2-8). 
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Table 5. Theoretical toxicity analysis produced by steroid derivatives. 

Compound Rat IP LD50 

(mgkg) 

Rat IV LD50 

(mgkg) 

Rat Oral LD50 

(mgkg) 

Rat SC LD50 

(mgkg) 

1 1587.00     70.40     4094.00     3477.00     

12 1143.00     11.88     2407.00     1618.00     

14 472.70     4.91     1085.00     307.30     

19 1552.00     1.16     1218.00     1222.00     

22 512.30     11.85     11.85     397.40     

Note: IP - Intraperitoneal route of administration; IV - Intravenous route of administration; Oral - Oral route of 

administration; SC - Subcutaneous route of administration. Source: Authors, 2024.  

 

4. Discussion 

In the literature there are several reports on computer-aided drug design (Macalino et al., 2015; Hassan-Baig et 

al., 2016); These methods are used to predict the biological activity produced by several drugs on some 

biomolecule; In this way, in this research a theoretical study was carried out to evaluate the activity of steroid 

derivatives on (VEGFR-1) using some tools such as; 

 

4.1 Pharmacophore model 

Pharmacophore models are used to define the chemical characteristics of one or more molecules with the same 

biological activity; in this way pharmacophore is used as a theoretical tool to develop some compounds with 

therapeutic purposes (Wang et al., 2017). For example, some studies developed a C6-substituted steroid 

pharmacophore-based strategy to identify new aromatase inhibitors using HipHop pharmacophore model (Neves 

et al., 2009). Other data showed the pharmacophore for testosterone, estradiol and androstenedione using 

Discovery Studio 2.0 program (Saxena et al., 2016).  

Besides, a report showed the identification of inhibitors of the steroid sulfate transporter using 

Catalyst-Pharmacophore Model (Grosser et al., 2016). Recently, a pharmacophore for a steroid derivative was 

developed using the LigandScout program (Figueroa-Valverde et al., 2023). The aim of this study, several 

pharmacophores were designed for eight steroid derivatives using Ligandscout software. In the Figure 2 are 

showed different pharmacophore for eight steroid derivatives; it is noteworthy that characteristics of each 

pharmacophore depends on the functional groups involved in the chemical structure of steroid derivatives, which 

can be hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), halogen bond donor (XBD), rings, 

aromatics and hydrophobic areas. 

 

4.2 Ligand-protein complex 

The interactions of biomolecules (protein-protein and small molecules with macromolecules) are essential to 

produce different biological activities such as signal transduction, physiological regulation, genetic transcription 

and enzymatic activity. In the search for some system which can predict protein-protein interactions, several 

methods have been used such as NGPINT (Banerjee et al., 2021), MEGADOCK (Matsuzaki et al., 2013), 

ProKSim (Khruschev et al., 2013) and others. Furthermore, to evaluate the interaction of small molecules with 

macromolecules, other types of methods are used to determine the ligand-protein complex formation. For 

example, PyPLIF (Radifar et al., 2013), PLIP (Salentin et al., 2015), LIGPLOT (Wallace et al., 1995), Autodock 

(Forli et al., 2016), DockingServer (Figueroa-Valverde et al., 2023).  

In this study, the interaction of steroid derivatives with vascular endothelial growth factor receptor-1 (VEGFR-1) 

was evaluated using 3hng protein, cabozantinib, pazopanib, regorafenib and sorafenib as theoretical tools in 

DockingServer program. The results (Table 1, Figure 3) showed differences in the number of amino acid 

residues involved in the interaction of the steroid derivatives with the surface of the 3hng protein compared to 

cabozantinib, pazopanib, regorafenib and sorafenib. Furtheremore, the steroid derivative (compound 1) may 

possibly interact with Ala874 aminoacid residue compared to cabozantinib, pazopanib, regorafenib and sorafenib 

and steroid derivatives 2 to 8.  

https://www.sciencedirect.com/science/article/pii/S0223523409002955
https://www.sciencedirect.com/science/article/pii/S0223523409002955
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This phenomenon could condition the biological activity of steroid derivatives; however, it is important to 

mention that other type of thermodynamic factors could be involved. For this reason, in this study 

thermodynamic parameters (Table 2) for steroid derivatives, cabozantinib, pazopanib, regorafenib and sorafenib 

were evaluated using DockingServer program. The results showed differences in the energies levels for steroid 

derivatives compared with cabozantinib, pazopanib, regorafenib and sorafenib. Other data showed that inhibition 

constant (Ki) for 6 was lower compared with steroid derivatives (1-5, 7 and 8), cabozantinib, pazopanib, 

regorafenib and sorafenib. Besides, the Ki for steroid derivatives 1, 3, 4, 7 and 8 was lower compared to 

pazopanib, regorafenib and sorafenib. All these data indicate that steroid derivatives 1, 3, 4, 6, 7 and 8 could act 

as 3hng protein inhibitors, this phenomenon could be translated as vascular endothelial growth factor receptor 1 

(VEGFR-1) inhibition which could be involved in some cancer cell growth processes. 

 

4.3 Lipophilicity analysis 

In the literature there are reports on the determination of lipophilicity degree of several compounds using 

different methods such as ilogP (Daina et al., 2014), XlogP (Zhong et al., 2018), WlogP (Daina et al., 2016), 

MlogP (Chui, 2010), Silicost-IT (Shahryari et al., 2021). Furthermore, other studies showed that SwissADME 

software can be used to determine the lipophilicity degree (LogPo/w consensus) of several drugs. Analyzing 

these data, in this study, SwissADME program was used to calculate the lipophilicity degree of steroid 

derivatives [33]. The results (Table 3) display that compound 1 have higher lipophilicity degree compared with 

other steroid derivatives; this phenomenon could condition some changes in pharmacokinetic process. 

 

4.4 Pharmacokinetic parameters 

There are several methods such as PK/PD (Derendorf et al., 1999), PKMP (Shah, 2022), PBPK (Kanacher et al., 

2020), PkQuest (Levitt et al., 2002) have been used to characterize the effectiveness and safety of medications. 

In this research, SwissADME (Mahanthesh et al., 2020) was used to determinate some pharmacokinetic 

parameters for steroid derivatives 1, 3, 4, 6, 7 and 8. The results showed that; i) possibly the absorption of 

compound 1 could be lower compared to 3, 4, 6, 7 and 8; and ii) steroid derivatives could be metabolized 

through different Cyp's. This phenomenon could depend on the chemical characteristics of each steroid 

derivative, which may result in the generation of a beneficial or toxic metabolite. 

 

4.5 Toxicology analysis 

For several years, several computational tools such as ProTox-II (Banerjee et al., 2018), STopTox (Borba et al., 

2022), GUSAR (Lagunin et al., 2011) have been used to predict toxicity degree of new compounds with 

biological activity. For this reason, in this research, the possible toxicity produced by steroid derivatives (1-8) 

was determined using the GUSAR software. The results display that compound 1 requires higher doses through 

intraperitoneal, intravenous, oral and subcutaneous routes of administration to produce a certain degree of 

toxicity compared to steroid derivatives. These data suggest that toxicity could depends on the following 

parameters; i) the dose administered; ii) the different routes of administration; and iii) the chemical 

characteristics of each steroid derivative. 

 

5. Conclusions 

Theoretical models used in this study are suitable for the following reasons: i) develop a pharmacophore model 

for steroid derivatives that allows analyzing their interaction with 3hng protein surface; ii) analyze the 

thermodynamic parameters involved in the interaction of steroidal derivatives with the 3hng protein surface; ii) 

Analyze both pharmacokinetic and toxicological aspects that can determine the biological activity of each steroid 

derivative. All these data suggest that steroid derivatives 1, 3, 4, 6, 7 and 8 could be a good alternative as 

VEGFR-1inhibitors to decrease cancer cells growth. 
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