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Abstract 

The prodrug technique is still one of the most effective ways to increase hydrophilic substances' medicinal, 

pharmacodynamic and pharmacokinetic properties. Prodrugs produced in current history have shown good 

pharmacokinetic characteristics, allowing for a more consistent release and fewer changes in plasma levels. 

Developing new prodrugs having a desirable ADME (Absorption Distribution Metabolism and Elimination) 

properties and that still can cross the Blood brain barrier (BBB) and pharmacologically active an appealing task 

for medicinal chemists. The loss of brain neuron activity characterizes neurodegenerative illnesses, resulting in 

progressive Gradual cognitive impairment (GCI). Some of the common neurodegenerative diseases are PD 

(Parkinson's disease), AD (Alzheimer's disease), MS (Multiple sclerosis), ALS (amyotrophic lateral sclerosis) & 

HD (Huntington's disease) are examples of neurodegenerative illnesses with a variety of etiologies and 

morphological and pathophysiological aspects. The current review is concerned with current advances in 

prodrug approaches for the treatment and prevention of the most prevalent neurological illnesses, as well as their 

absorption, selective CNS targeting and chemical and enzymatic stability. 
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Abordagens avançadas de pró-fármacos para doenças neurodegenerativas 

Resumo 

A técnica de pró-fármacos ainda é uma das formas mais eficazes de aumentar as propriedades medicinais, 

farmacodinâmicas e farmacocinéticas de substâncias hidrofílicas. Os pró-fármacos produzidos na história atual, 

mostraram boas características farmacocinéticas, permitindo uma liberação mais consistente e menos alterações 

nos níveis plasmáticos. Desenvolver novos pró-fármacos com propriedades ADME (Metabolismo e Eliminação 

de Distribuição de Absorção) desejáveis e que ainda possam atravessar a barreira hematoencefálica (BBB), e ser 

farmacologicamente ativos, é uma tarefa atraente para os químicos medicinais. A perda da atividade dos 

neurônios cerebrais caracteriza doenças neurodegenerativas, resultando em comprometimento cognitivo gradual 

progressivo (GCI). Algumas das doenças neurodegenerativas comuns são DP (doença de Parkinson), DA 

(doença de Alzheimer), EM (Eclerose Múltipla), ELA (Esclerose Lateral Amiotrófica) e DH (doença de 

Huntington), são exemplos de doenças neurodegenerativas com uma variedade de etiologias e alterações 

morfológicas e aspectos fisiopatológicos. A revisão atual está preocupada com os avanços atuais nas abordagens 

de pró-fármacos para o tratamento e prevenção das doenças neurológicas mais prevalentes, bem como sua 

absorção, direcionamento seletivo do SNC e estabilidade química e enzimática. 

Palavras-chave: doença de Alzheimer, biotransformação, esclerose múltipla, pró-fármacos, farmacocinética. 

 

1. Introduction 

1.1 Prodrug  

Albert was the first person to introduce the term "prodrug" in medicinal chemistry in 1958. Prodrugs are 

chemical compounds which are pharmacologically inert that undergo a biotransformation process converting 

into an active substance earlier than showing pharmacological effects (Benek et al., 2020). They are drugs that 

comprise precise innocuous groups which can alternate or eliminate undesirable properties of parent molecule 

(Albert, 1958).  

mailto:anjaliangel84.pharma@gmail.com
https://doi.org/10.14295/bjs.v2i10.369


Brazilian Journal of Science, 2(10), 1-12, 2023. ISSN: 2764-3417  

2 
 

In general, specialized enzymes primarily hydrolases, catalyze the metabolic change that turns the prodrug into 

the drug, and should ideally occur selectively at the target tissue to avoid undesired complication which can be 

released before, during, or after absorption (Sinkula; Yalkowsky, 1975). The main purpose of prodrug design is 

to overcome the variety of challenges in physicochemical, pharmaceutical, biopharmaceutical, and 

pharmacokinetic properties of the parent drug, which would otherwise prevent it from being used in clinical 

trials (Rautio et al., 2008). The prodrug concept has observed several applications in drug studies and 

development because it allows for the achievement of several contradictory biological and physicochemical 

goals (Han; Amidon, 2000).  

There are a variety of ways to categorise prodrugs, these could be: (1) Therapeutic classes, such as antibacterial, 

anticancer, non-steroidal anti-inflammatory prodrugs (NSAIDs), antiviral, cardiovascular prodrugs, and so forth; 

(2) Esteric prodrugs, like bipartite, tripartite prodrugs and gene, virus-directed enzyme and glycosidic prodrugs 

are examples of chemically linked or moiety or carriers connected to active drug; (3) Prodrugs which increase 

site-specificity, skip first-pass metabolism and improve absorption are few examples of beneficial strategic ways 

(Bianchi et al., 2021). 

 

1.2 Neurodegenerative diseases  

The loss of brain neuron activity is characteristics of Neurodegenerative diseases, resulting in gradual cognitive 

impairment (GCI). Neurodegenerative disorders like Dementia, Alzheimer's disease are increasing, and around 

17.2 million people worldwide are suffering from them. If the risk factors are reduced to 10%-25%, it can 

prevent 1.1–3.0 million cases of Alzheimer's disease globally (Saydoff i et al., 2003). The function of epigenetic 

variables in the development of neurodegenerative illness has been extensively studied, with evidence of the 

importance of DNA and histone changes, as well as non-coding RNA, in the pathogenesis of these diseases 

(Jellinker, 2003).  

Parkinson's disease (PD), Huntington's diseases (HD), Alzheimer's disease (AD), Multiple sclerosis (MS) and 

amyotrophic lateral sclerosis (ALS) are some neurodegenerative diseases with diverse etiologies and 

morphological and pathophysiological aspects. These conditions are complex and exhibit neuropathological 

markers such as: (a) mitochondrial dysfunctions and impaired bioenergetics; (b) neuro-inflammatory processes 

(c) Impaired protein breakdown and aggregation due to abnormal protein dynamics; (d) Free radical formation 

and oxidative stress (Jellinker, 2003).   

Although the exact chronology of operations is difficult to determine, oxidative damage to the brains has been 

demonstrated to be one of the earliest clinical signs. The oxidative stress is caused by imbalance between the 

increased generations of reactive nitrogen species (RNS), reactive oxygen species (ROS), and the anti-oxidative 

defense systems cause oxidative and nitrosative stress (Valko et al., 2007). ROS are regulatory intermediates that 

modulate cellular functions at low levels, and they cause neuronal membrane injury at higher concentrations. 

The hydrogen peroxide (H2O2), superoxide anion (O2-) and hydroxyl radical (HO•) are the major ROS involved 

in neurodegeneration. Nitric oxide (NO) and other ROS can combine with oxygen to form peroxynitrite (NO3-), 

a potent oxidant can decompose to form HO• (Melo et al., 2011).  

Cells generally use enzymes Glutathione (GSH) peroxidase, Cu/Zn- reductase enzyme, catalase enzyme, 

methionine sulfoxide reductase enzyme and Manganese superoxide dismutase (MSD) and low molecular-weight 

antioxidants (vitamin E, and ascorbate) against free radicals. When the antioxidant defense network fails, 

macromolecules including proteins, lipids, and DNA are destroyed, resulting in apoptosis or cell death 

(Lardenoije et al., 2018). 

 

2. Literature review 

2.1 Prodrug treatment strategies for various neurodegenerative diseases 

2.1.1 Alzheimer’s disease 

Alzheimer's disease (AD) is a neurological illness among the elderly which causes attention problems, cognitive 

and memory loss. It is most frequent kind of dementia among neurodegenerative diseases. Histological 

alterations associated with the disease include extracellular β-Amyloid (Aβ) deposits and intracellular 

neurofibrillary tangles (NFTs) (McBride et al., 2004). Plaques or accumulation/aggregation of β-Amyloid (Aβ) 

peptides 40-42 amino acids in length is one of the hallmarks of Alzheimer's disease. They are made by the 

β-secretase (BACE) enzyme proteolytically cleaving the Aβ primordial polypeptide (AβPP) and subsequently the 
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γ-secretase enzyme. The production of Aβ oligomers and amyloid plaques as a result of this is considered to play 

a key role in neuronal degeneration and, eventually, cognitive failure (Lima et al., 2018). Pro-inflammatory 

mediators like interleukins (IL)-1α, interleukins-1β, interleukins-6, cytokines, and tumor necrosis factor (TNF-α) 

are also linked to plaques. The tau (τ) protein linked with microtubules is abnormally phosphorylated in the AD 

brain. These τ-proteins induce the microtubule system to break down, resulting in neuronal malfunction and 

degeneration. Cognitive impairment, neural inflammation, and neuronal death are primary symptoms to diagnose 

AD (Athar et al., 2021). 

 

2.1.2 Anti-Alzheimer’s prodrugs  

The two categories of medications currently used for the treatment of Alzheimer's disease are 

acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate (NMDAR) receptor antagonists. The former 

impede acetylcholinesterase activity and boosts acetylcholine level inside the CNS restoring cognitive function. 

The latter prevents glutamate toxicity caused by NMDA over-activation. Only a few of the symptoms of 

Alzheimer's disease can be alleviated with these drugs (Corbett; Ballard, 2012). The β-amyloid theory has 

governed the pathophysiology of Alzheimer's disease. Efforts to target conventional routes, on the other hand, 

have been continuously unproductive over the last decade. As a result, more powerful disease-modifying 

treatments and cognitive impairment medications are needed to delay the onset or prevent the Alzheimer's 

disease (Giacobini; Gold, 2013).  

 

2.1.3 Prodrug of 7,8-dihydroxyflavone (7,8-DHF)  

Growth factors like Neurotrophins regulate the viability, differentiation, and development of neurons. The 

cognate Tropomyosin receptor kinase B (TrkB) receptors are where neurotrophins exercise their trophic effects. 

The expression of brain-derived neutotrophic factors (BDNF) in Alzheimer's affected brains is seen to be 

reduced. Thus 7, 8-dihydroxyflavone (7,8-DHF), acts as a powerful BDNF mimetics and TrkB agonist, having 

promising anti-Alzheimer's effect. But 7,8-DHF, on the other hand, has low pharmacokinetic (PK) profile and 

oral bioavailability. Chen C, et al. synthesized number of 7,8- DHF derivatives by modifying the catechol ring of 

the parent molecule with an ester or carbamate group from which prodrug R13 (Figure 1) exhibited positive 

qualities and restored cognitive impairments in an AD mice model depending on the dose, and it increased brain 

exposure of prodrug and bioavailability. Long term oral treatment of R13 enhanced TrkB signaling and prevents 

pathogenic cleavage of amyloid precursor proteins (APP) (Chen et al., 2018). 

 

 

 

 

 

 

Figure 1. Chemical structure of R13. Source: Authors, 2023. 

 

2.1.4 Prodrug of tramiprosate 

Tramiprosate is a small-molecule aggregation inhibitor and anti-oligomer for Alzheimer's disease. Tramiprosate 

inhibits the formation of β-amyloid oligomers through a multi-ligand wrapping mechanism of action that 

stabilises Aβ42 monomers, inhibiting the development of oligomers and subsequent aggregation. Tramiprosate 

has drawbacks of substantial inter-subject pharmacokinetic (PK) variability, which was likely owing to extensive 

gastrointestinal metabolism and a mild-to-moderate incidence of vomiting and nausea.  

ALZ-801 (Figure 2) is a valine-conjugated tramiprosate prodrug developed by Hey et al. (2018) that can be 

taken orally. ALZ-801 is a reformulated tramiprosate prodrug that maintains tramiprosate's effectiveness while 

enhancing oral PK variability and gastrointestinal tolerability. ALZ-801 was well tolerated in the study, with no 

serious or major adverse events or abnormal laboratory test results. ALZ-801 produced dose-dependent peak 

plasma concentrations (Cmax) and AUC tramiprosate exposures equal to oral tramiprosate, but with much lower 

inter-subject variance and a prolonged elimination half-life. ALZ-801 exhibited grater oral safety and tolerability 

when given as a capsule or tablet. With considerably enhanced PK characteristics when compared to oral 
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tramiprosate in healthy individuals and elderly volunteers (Hey et al., 2018). 

 

 

 

 

 

Figure 2. Chemical structure of ALZ-801. Source: Authors, 2023. 

 

2.1.5 Prodrug of memantine  

Memantine, a hydrogen sulphide donor has recently received a lot of interest because of its neuroprotective 

properties and anti-inflammatory in the brain. Sestito et al. (2018) replaced memantine's independent amine 

group with an isothiocyanate and made a new chemical entity called memit (Figure 3), which was then examined 

in vitro to see if it retained the "original drug's" pharmacological profile while continuing to be a source of H2S 

in the CNS. Memit produced memantine by using a cysteine-mediated method to release H2S. Memit is a novel 

chemical which inhibits self-aggregation of Aβ(1-42) and acted as a cytoprotector against damage induced by 

oligomer in both rat microglial cells and neurons of human (Sestito et al., 2018). 

 

 

 

 

 

 

Figure 3. Structures of memantine and the relative H2S-donor hybrid memit. Source: Authors, 2023. 

 

2.1.6 Peptide based prodrugs  

Carnosine (Figure 4) is a dipeptide of β-alanyl and L-histidine and has potential to prevent amyloid aggregation 

and deposition in animal models of neurodegenerative illnesses, as well as influence macrophage and microglia 

activity. The anti-inflammatory property of carnosine is the one that has recently received the most emphasis. 

Carnosine has recently been shown to suppress astrocyte stimulation and inflammatory cytokine interferon- 

(IFN-γ) release, in a mouse model (C57BL/6) having subcortical ischemic vascular dementia, the mice with 

permanent closure of the right unilateral common carotid arteries), this resulted in neuroprotection (Caruso et al., 

2019). 

 

 

 

 

 

 

Figure 4. Structure of L-Carnosine. Source: Authors, 2023. 

 

2.1.7 Amidated and ibuprofen-conjugated kyotorphins  

Kyotorphin (KTP) is endogenous analgesia and anti-inflammatory dipeptide with a potential neuromodulator and 

neuroprotector activity. KTP-amide (KTP–NH2) and KTP–NH2 coupled to ibuprofen (IbKTP–NH2), two 

recently developed KTP derivatives, have been suggested to increase KTP brain targeting (Satos et al., 2016). 

KTP is thought to have neuromodulatory and neuroprotective effects in addition to analgesia. According to the 

findings, KTP analogues minimized cognitive deficits and restored neurodegeneration in the hippocampus CA1 

area produced by chronic cerebral hypoperfusion. IbKTP–NH2 was also discovered to be more effective than 
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KTP–NH2 in restoring normal brain abilities (Nazrenko et al.,1999). 

 

 

 

 

 

 

 

 

Figure 5. Chemical structure of Ibuprofen-Conjugated Kyotorphins. Source: Authors, 2023. 

 

2.1.8 NSAIDs (Non-Steroidal Anti-Inflammatory Drugs) 

Are types of medication which relieves pain, prevents blood clots, suppresses fever in larger dosages and reduces 

inflammation. The activity of cyclo-oxygenase enzymes is inhibited by NSAIDs (COX 1 & COX 2). These 

enzymes are involved in the manufacture of essential biological mediators in cells, like prostaglandins and 

thromboxanes, which are implicated in blood clotting and inflammation. NSAIDs are divided into two categories: 

Non-selective COX inhibitor like Diclofenac, Ibuprofen, Flurbiprofen, Indomethacin, Aspirin and selective 

COX-2 inhibitors like Celecoxib, Etoricoxib, Parecoxib (Mannila et al., 2005). 

According to epidemiological research, alleviated risk of AD and PD were observed in patients with a history of 

prolonged NSAID usage (Novakova et al., 2014). The persistent inflammatory response in senile plaques leads 

to neuronal degradation processes, according to a large body of evidence. Furthermore, in the frontal cortex of 

the AD brain, the expression of cyclo-oxygenase (COX-2) is elevated, which catalyzes the manufacture of 

inflammatory mediators (Pasinetti; Aisen, 1998).  

Many researchers have been inspired by the idea that NSAIDs, which suppress COX-2 activity, prevent 

neurodegeneration in Alzheimer's disease. NSAIDs distribution into the CNS is often limited, it is critical to 

design a delivery method for NSAIDs so that they may be taken up by the brain more efficiently. In randomized 

clinical trials, NSAIDs appear to be ineffective in lowering the rate of conversion of mild cognitive impairment 

(MCI) to dementia. According to a study that revealed contradictory results, NSAIDs appear to be ineffective in 

lowering the rate of conversion of MCI to dementia in randomized clinical trials (Deguchi et al., 2000). 

 

2.2 Parkinson’s disease 

Parkinsonism is a CNS progressive disease and neurological disorder characterized by loss of dopaminergic 

neurons connections, especially in two parts of the brain: the locus coeruleus, which regulates psychological 

function, and the Substantia Nigra pars compacta (SNpc), which regulates motor function (Poewe et al., 2017).  

Lewy bodies are protein agglomerations lodged in the cytoplasmic part of dying neurons.  

They signal that the degenerative process has started (Xilouri et al., 2012). In PD patients cholinergic and 

serotonergic dysfunctions, as well as anatomical deficiencies, such as the hippocampus and cortical atrophy, 

were found. In PD patients muscarinic and neuromuscular and motor receptors are also shown to be reduced, and 

results in cognitive and motor deficits (Muller; Bohnen, 2013). The 5-hydroxytryptamine (5-HT) and its 

metabolites level in PD brain is found to be low in comparison to the normal brain. PD symptoms can be 

described in a trio of disorders: rigidity, tremor and difficulty in passive and active movement. The neurons of 

serotonin in striatum (putamen and caudate) found to be increased in PD patients (Savica et al., 2013).  

Despite of our recent advancements in the pathogenesis understanding of PD, getting the drugs pass through the 

BBB to the CNS remains a big hurdle. Levodopa (LD) is accepted as the standard drug for the treatment of PD. 

Prodrugs that combine one or more strategies to improve BBB penetration have made significant progress 

(Kianirad; Simuni, 2013). The use of prodrugs in conjunction with medication delivery devices has recently been 

successful strategy for brain targeting. The carrier's enzymatic & chemical protection, together with the prodrug's 

ability to penetrate the BBB barrier, has allowed for sustained and slow release, improving disease control and 

lowering plasma fluctuations (Marsden et al., 1973). Molecules used to treat neurodegenerative diseases like 

Parkinson's disease can enter the BBB using carrier-mediated transporters like GLUT1, CAT1, MCT1, CNT2& 
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LAT1, passive diffusion, receptor-mediated transporters, which includes leptin receptors, transferrin, and insulin 

& endocytosis (Muller, 2015). 

 

2.2.1 Anti-Parkinson prodrugs 

2.2.1.1 Dopamine (DA) prodrug  

DA has a very strong LAT1 transporter affinity in the brain of rat. Tutone M et al. discovered and produced 

dopamine-amino acid prodrugs in 2016. To make the equivalent prodrugs, amino acids like L-leucine, 

L-tryptophan & L-phenylalanine, attached to the Dopamine amino group. Prodrugs 6d–6f were more 

hydrophobic than prodrugs 6a-6c, with Log D values > 0; nevertheless, their stability was less in human plasma 

having half life (t1/2) = 2 h and brain homogenate having  half life (t1/2) = 3 h. The Dopamine prodrugs 6a to 

6f are promising candidates for additional in vivo testing (Tutone et al., 2016). 

 

 

 

 

 

 

 

 

Figure 6. Dopamine prodrugs. Source: Authors, 2023. 

  

2.2.1.2 L-Dopa (LD) prodrugs  

To address the LD bioavailability issue and peripheral metabolism, a water-soluble prodrug LD prodrug 

DopAmide (prodrug, Figure 7) was synthesized by amidation of the LD carboxylic group which has more 

extended half-life (t1/2 = 4.1 h 0 in rats than LD (t1/2 = 2.9 h). Furthermore, in vivo studies on rats with 

6-hydroxy-dopamine infracted plasma levels demonstrated that the level of L-Dopa in plasma were sustained for 

a longer length of time after DopAmide therapy than after L-Dopa (Figure 8) treatment. Prodrug 7 when used for 

the treatment of 6-hydroxydopamine (6-OHDA)-lnfracted brains led in greater DA activity than LD therapy 

(approx. 35 percent rotations in total), showing that DA release is effective over time. Additionally, by providing 

a regular DA release, prodrug 8 reduced fluctuations (Atlas, 2016). 

 

 

 

 

 

 

Figure 7. XP21279. Source: Authors, 2023. 

8: R1 = R2 = R3 = R4 = H; R5 = NH2  

9: R1 = R3 = R4 = H; R2 = P(O)(OH)2; R5 = OH  

10: R1 = R2 = R4= H; R3 = P(O)(OH)2; R5= OH  

11: R1= R4= H; R2 = R3 = P(O)(OH)2; R5 = OH 

12: R1 = R3 = R4 = R5 = H; R2 = Ph   

13: R1 = R2 = R3 = Me; R4 = R5 = H  

14: R1 = Me; R2R3 = c-Hexyl; R4 = R5 = H  

 

 

15: R1 = Me; R2R3 = c-Pentyl; R4 = R5 = H  

16: R1= Me; R3= c-Hexylmethyl; R2 =R4=R5 = H  

17: R1 = Bn; R2 = R3 = Me; R4 = R5 = H  

18: R1 = i-Pr; R2 = R3 = Me; R4 = R5 = H  

19: R1 = c-Hexyl; R2 = R3 = Me; R4 = R5 = H  

20: R1 = i-Penthyl; R2 = R3 = Me; R4 = R5 = H  

21: R1 = R2 = R3 = Me; R4 = R5 = Ac  

22: R1 = Me; R2 R3 = c-Hexyl; R4 = R5 = Ac  

23: R1 = Me; R2 R3 = c-Pentyl; R4 = R5 = Ac  
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24:R1=Me; R2=H;R3=c-Hexylmethyl;R4=R5= Ac  

25: R1 = R4 = R5 = H; R2 = R3 = Me  

26: R1 = H; R2 = R3 = Me; R4 = R5 = Ac  

27: R1 = R4 = R5 = H; R3 = Bn; R2 = Me 

 

 

 

 

 

 

 

 

Figure 8. LD prodrugs. Source: Authors, 2023. 

 

Further the phosphate groups were conjugated with catechol group to create Levodopa phosphate prodrugs 

(prodrugs 9 to 11), which increased water stability and solubility. Prodrugs 10 and 11 have higher solubilities by 

67 and 55 times, respectively, comparatively to the LD solubility. Furthermore, in a pharmacokinetic 

investigation on rats, the in-vivo prodrugs conversion was assessed. The phosphate prodrug hydrolyzed into LD 

completely after 24 hours, 66% of prodrug 9 converted to prodrugs 10 and 11. Zhou et al. (2010) used 

non-natural amino-acids to synthesize dipeptide LD prodrugs 13 to 27. The antiparkinson effects of prodrugs 

were tested 6-OHDA-lesioned rats, drug administered orally. The prodrug 18 containing amino acidic moiety 

2,3-dimethylglycine, was found to be most active, with a hundred and six percent AUC activity and a 149% peak 

activity of LD. To corroborate these preliminary findings, more in vivo trials are required (Zhou et al., 2010). 

 

2.2.1.3 Rasagiline prodrug  

Rasagiline is a MAO-B inhibitor often prescribed for Parkinson's disease. It decreases oxidative stress and 

enhances synaptic DA concentrations at the same time. However, it has a low oral bioavailability of 36% and a 

short elimination half-life of 0.6–2 h. Fernández et al. (2012) designed and synthesized a method for controlled 

release of parenteral administration of the prodrug 33 rasagiline mesylate (Figure 9) in 2012. The carrier released 

62.3 g per day per 20 mg microspheres in-vitro, followed by a two-week zero-order release with constant rate 

(Fernandez et al., 2012). 

 

 

 

 

 

 

Figure 9. Rasagiline prodrug (Prodrug 33). Source: Authors, 2023. 

 

2.2.1.4 Prodrugs of Norepinephrine 

The most common non-motor clinical manifestations associated with the Parkinson's disease is neurogenic 

orthostatic hypotension. It is produced by inappropriate generation of Norepinephrine (Figure 10) responses to 

postural alterations. Droxidopa is transformed to the sympathetic neurotransmitter through decarboxylation when 

taken orally. Goldstein et al. (2011) in 2011 investigated the effects of combination of 

L-Dihydroxyophenylserine (DOPS) with entacapone or carbidopa on metabolic destiny, hence it boosted the 

prodrug's action; nevertheless, no significant differences were found across treatments (Goldstein et al., 2011). 
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Figure 10. Norepinephrine prodrug (Prodrug 34). Source: Authors, 2023. 

 

As persons with Parkinson's disease age, they are more likely to develop dementia, which causes significant 

morbidity and mortality in 80–90% of cases. The causes of Parkinson's disease are unknown; however, insulin 

resistance has recently been revealed, implying a relationship between glucose metabolism and 

Neurodegeneration (Table 1) (Ashraghi et al., 2016). 

 

Table 1. Prodrugs for the treatments of various neurodegenerative diseases. 

Drug Structure Mechanism Disease 

Treatment 

References 

Ketoprofen and 

aromatic amino acid 

pro-moiety 

 

 

Non-selective 

COX-inhibitor 

Alzheimer's 

disease 

(Tampio et 

al., 2020). 

Amino acid conjugated 

indomethacin 

 Non-selective 

COX-inhibitor 

Alzheimer's 

disease 

(Roy et al., 

2014). 

L-ascorbic 

acid-prodrugs of 

ibuprofen 

 L-ascorbic acid as 

anti-oxidant and 

ibuprofen, 

anti-inflammatory 

Alzheimer's 

disease 

(Pignatello 

et al., 2008). 

Prodrugs of naproxen 

coupled with 

dimethylamino moiety. 

 Non-selective 

COX-inhibitor 

Alzheimer's 

disease 

(Zhang et 

al., 2012). 

D-glucose derivative of 

ibuprofen 

 Non-selective 

COX-inhibitor 

Alzheimer's 

disease 

(Chen et al., 

2009). 

Fluribiprofen(FLU)-lipo

aminoacids (LAA) 

promoiety 

 Aβ aggregation inhibitor. Alzheimer's 

disease 

(Marsden et 

al., 1973). 

Carbidopa Sinemet (in 

combination with 

L-Dopa) 

 Peripherally inhibitor of 

aromatic amino acid 

decarboxylase (AADC) 

Parkinson's 

disease 

(Rinne et al., 

1979). 
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Benserazide Madopar 

(in combination with 

L-Dopa) 

 Peripherally active 

inhibitor of AADC 

Parkinson's 

disease 

(Brooks et 

al., 2003). 

Diphenhydramine 

Benadryl 

 Anticholinergic agent Parkinson's 

disease 

(Gonzalez et 

al., 2009). 

Source: Authors, 2023. 

 

3. Conclusions 

Prodrug technique is a useful tool for targeting medications to the brain with low water solubility, improving low 

distribution to target sites, minimizing enzymatic metabolism, improving adsorption, pharmacokinetic and 

pharmacodynamic features. However, there are several limitations to the prodrug technique like, dispersion of 

lipophilic prodrugs or prodrug bioconversion by enzymes of plasma at early stages, which can be addressed by 

nanotechnology methods that target and deliver the unmodified prodrug to the central nervous system, 

selectively. A delivery system of drug combined with prodrug technique could be an effective way to target and 

deliver drugs to the brain to prevent or treat the neurodegenerative diseases. 
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